Author: Arthur Rizzi
Publisher: Cambridge University Press
ISBN: 1009038257
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
This modern text presents aerodynamic design of aircraft with realistic applications, using CFD software and guidance on its use. Tutorials, exercises, and mini-projects provided involve design of real aircraft, ranging from straight to swept to slender wings, from low speed to supersonic. Supported by online resources and supplements, this toolkit covers topics such as shape optimization to minimize drag and collaborative designing. Prepares seniors and first-year graduate students for design and analysis tasks in aerospace companies. In addition, it is a valuable resource for practicing engineers, aircraft designers, and entrepreneurial consultants.
Aircraft Aerodynamic Design with Computational Software
Author: Arthur Rizzi
Publisher: Cambridge University Press
ISBN: 1009038257
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
This modern text presents aerodynamic design of aircraft with realistic applications, using CFD software and guidance on its use. Tutorials, exercises, and mini-projects provided involve design of real aircraft, ranging from straight to swept to slender wings, from low speed to supersonic. Supported by online resources and supplements, this toolkit covers topics such as shape optimization to minimize drag and collaborative designing. Prepares seniors and first-year graduate students for design and analysis tasks in aerospace companies. In addition, it is a valuable resource for practicing engineers, aircraft designers, and entrepreneurial consultants.
Publisher: Cambridge University Press
ISBN: 1009038257
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
This modern text presents aerodynamic design of aircraft with realistic applications, using CFD software and guidance on its use. Tutorials, exercises, and mini-projects provided involve design of real aircraft, ranging from straight to swept to slender wings, from low speed to supersonic. Supported by online resources and supplements, this toolkit covers topics such as shape optimization to minimize drag and collaborative designing. Prepares seniors and first-year graduate students for design and analysis tasks in aerospace companies. In addition, it is a valuable resource for practicing engineers, aircraft designers, and entrepreneurial consultants.
Aircraft Aerodynamic Design with Computational Software
Author: Arthur Rizzi
Publisher: Cambridge University Press
ISBN: 1107019486
Category : Mathematics
Languages : en
Pages : 467
Book Description
Aerodynamic design of aircraft presented with realistic applications, using CFD software. Tutorials, exercises, and mini-projects provided involve design of real aircraft. Using online resources and supplements, this text prepares last-year undergraduates and first-year graduate students for industrial aerospace design and analysis tasks.
Publisher: Cambridge University Press
ISBN: 1107019486
Category : Mathematics
Languages : en
Pages : 467
Book Description
Aerodynamic design of aircraft presented with realistic applications, using CFD software. Tutorials, exercises, and mini-projects provided involve design of real aircraft. Using online resources and supplements, this text prepares last-year undergraduates and first-year graduate students for industrial aerospace design and analysis tasks.
Applied Computational Aerodynamics
Author: Russell M. Cummings
Publisher: Cambridge University Press
ISBN: 1107053749
Category : Mathematics
Languages : en
Pages : 893
Book Description
This book covers the application of computational fluid dynamics from low-speed to high-speed flows, especially for use in aerospace applications.
Publisher: Cambridge University Press
ISBN: 1107053749
Category : Mathematics
Languages : en
Pages : 893
Book Description
This book covers the application of computational fluid dynamics from low-speed to high-speed flows, especially for use in aerospace applications.
Aircraft Aerodynamic Design
Author: András Sóbester
Publisher: John Wiley & Sons
ISBN: 0470662573
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variables. This model's objectives are to be flexible and concise, and capable of yielding a wide range of shapes with a minimum number of design variables. Moreover, the process of converting these variables into aircraft geometries must be robust. Alas, flexibility, conciseness and robustness can seldom be achieved simultaneously. Aircraft Aerodynamic Design: Geometry and Optimization addresses this problem by navigating the subtle trade-offs between the competing objectives of geometry parameterization. It beginswith the fundamentals of geometry-centred aircraft design, followed by a review of the building blocks of computational geometries, the curve and surface formulations at the heart of aircraft geometry. The authors then cover a range of legacy formulations in the build-up towards a discussion of the most flexible shape models used in aerodynamic design (with a focus on lift generating surfaces). The book takes a practical approach and includes MATLAB®, Python and Rhinoceros® code, as well as ‘real-life’ example case studies. Key features: Covers effective geometry parameterization within the context of design optimization Demonstrates how geometry parameterization is an important element of modern aircraft design Includes code and case studies which enable the reader to apply each theoretical concept either as an aid to understanding or as a building block of their own geometry model Accompanied by a website hosting codes Aircraft Aerodynamic Design: Geometry and Optimization is a practical guide for researchers and practitioners in the aerospace industry, and a reference for graduate and undergraduate students in aircraft design and multidisciplinary design optimization.
Publisher: John Wiley & Sons
ISBN: 0470662573
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variables. This model's objectives are to be flexible and concise, and capable of yielding a wide range of shapes with a minimum number of design variables. Moreover, the process of converting these variables into aircraft geometries must be robust. Alas, flexibility, conciseness and robustness can seldom be achieved simultaneously. Aircraft Aerodynamic Design: Geometry and Optimization addresses this problem by navigating the subtle trade-offs between the competing objectives of geometry parameterization. It beginswith the fundamentals of geometry-centred aircraft design, followed by a review of the building blocks of computational geometries, the curve and surface formulations at the heart of aircraft geometry. The authors then cover a range of legacy formulations in the build-up towards a discussion of the most flexible shape models used in aerodynamic design (with a focus on lift generating surfaces). The book takes a practical approach and includes MATLAB®, Python and Rhinoceros® code, as well as ‘real-life’ example case studies. Key features: Covers effective geometry parameterization within the context of design optimization Demonstrates how geometry parameterization is an important element of modern aircraft design Includes code and case studies which enable the reader to apply each theoretical concept either as an aid to understanding or as a building block of their own geometry model Accompanied by a website hosting codes Aircraft Aerodynamic Design: Geometry and Optimization is a practical guide for researchers and practitioners in the aerospace industry, and a reference for graduate and undergraduate students in aircraft design and multidisciplinary design optimization.
Aerodynamic Design of Transport Aircraft
Author: E. Obert
Publisher: IOS Press
ISBN: 1607504073
Category : Science
Languages : en
Pages : 656
Book Description
The origin of Aerodynamic Design of Transport Aircraft stems from the time when the author was appointed part-time professor in the Aerospace Faculty of Delft University of Technology. At the time his main activities were those of leading the departments of Aerodynamics, Performance and Preliminary Design at Fokker Aircraft Company. The groundwork for this book started in 1987 as a series of lecture notes consisting mainly of pictorial material with a minimum of English explanatory text. After the demise of Fokker in 1996 one feared that interest in aeronautical engineering would strongly diminish. As a result of this, the course was discontinued and the relationship between the author and the faculty came to an end. Two years later the situation was reappraised, and the interest in aeronautical engineering remained, so the course was reinstated with a former Fokker colleague Ronald Slingerland as lecturer. The lecture notes from these courses form the foundation of this publication.
Publisher: IOS Press
ISBN: 1607504073
Category : Science
Languages : en
Pages : 656
Book Description
The origin of Aerodynamic Design of Transport Aircraft stems from the time when the author was appointed part-time professor in the Aerospace Faculty of Delft University of Technology. At the time his main activities were those of leading the departments of Aerodynamics, Performance and Preliminary Design at Fokker Aircraft Company. The groundwork for this book started in 1987 as a series of lecture notes consisting mainly of pictorial material with a minimum of English explanatory text. After the demise of Fokker in 1996 one feared that interest in aeronautical engineering would strongly diminish. As a result of this, the course was discontinued and the relationship between the author and the faculty came to an end. Two years later the situation was reappraised, and the interest in aeronautical engineering remained, so the course was reinstated with a former Fokker colleague Ronald Slingerland as lecturer. The lecture notes from these courses form the foundation of this publication.
An Introduction to Theoretical and Computational Aerodynamics
Author: Jack Moran
Publisher: Courier Corporation
ISBN: 0486317536
Category : Technology & Engineering
Languages : en
Pages : 484
Book Description
Concise text discusses properties of wings and airfoils in incompressible and primarily inviscid flow, viscid flows, panel methods, finite difference methods, and computation of transonic flows past thin airfoils. 1984 edition.
Publisher: Courier Corporation
ISBN: 0486317536
Category : Technology & Engineering
Languages : en
Pages : 484
Book Description
Concise text discusses properties of wings and airfoils in incompressible and primarily inviscid flow, viscid flows, panel methods, finite difference methods, and computation of transonic flows past thin airfoils. 1984 edition.
Computational Aerodynamics
Author: Antony Jameson
Publisher: Cambridge University Press
ISBN: 1108950280
Category : Technology & Engineering
Languages : en
Pages : 632
Book Description
Computational aerodynamics is a relatively new field in engineering that investigates aircraft flow fields via the simulation of fluid motion and sophisticated numerical algorithms. This book provides an excellent reference to the subject for a wide audience, from graduate students to experienced researchers and professionals in the aerospace engineering field. Opening with the essential elements of computational aerodynamics, the relevant mathematical methods of fluid flow and numerical methods for partial differential equations are presented. Stability theory and shock capturing schemes, and vicious flow and time integration methods are then comprehensively outlined. The final chapters treat more advanced material, including energy stability for nonlinear problems, and higher order methods for unstructured and structured meshes. Presenting over 150 illustrations, including representative calculations on unstructured meshes in color. This book is a rich source of information that will be of interest and importance in this pioneering field.
Publisher: Cambridge University Press
ISBN: 1108950280
Category : Technology & Engineering
Languages : en
Pages : 632
Book Description
Computational aerodynamics is a relatively new field in engineering that investigates aircraft flow fields via the simulation of fluid motion and sophisticated numerical algorithms. This book provides an excellent reference to the subject for a wide audience, from graduate students to experienced researchers and professionals in the aerospace engineering field. Opening with the essential elements of computational aerodynamics, the relevant mathematical methods of fluid flow and numerical methods for partial differential equations are presented. Stability theory and shock capturing schemes, and vicious flow and time integration methods are then comprehensively outlined. The final chapters treat more advanced material, including energy stability for nonlinear problems, and higher order methods for unstructured and structured meshes. Presenting over 150 illustrations, including representative calculations on unstructured meshes in color. This book is a rich source of information that will be of interest and importance in this pioneering field.
Advanced Aircraft Design
Author: Egbert Torenbeek
Publisher: John Wiley & Sons
ISBN: 1118568095
Category : Technology & Engineering
Languages : en
Pages : 412
Book Description
Although the overall appearance of modern airliners has not changed a lot since the introduction of jetliners in the 1950s, their safety, efficiency and environmental friendliness have improved considerably. Main contributors to this have been gas turbine engine technology, advanced materials, computational aerodynamics, advanced structural analysis and on-board systems. Since aircraft design became a highly multidisciplinary activity, the development of multidisciplinary optimization (MDO) has become a popular new discipline. Despite this, the application of MDO during the conceptual design phase is not yet widespread. Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes presents a quasi-analytical optimization approach based on a concise set of sizing equations. Objectives are aerodynamic efficiency, mission fuel, empty weight and maximum takeoff weight. Independent design variables studied include design cruise altitude, wing area and span and thrust or power loading. Principal features of integrated concepts such as the blended wing and body and highly non-planar wings are also covered. The quasi-analytical approach enables designers to compare the results of high-fidelity MDO optimization with lower-fidelity methods which need far less computational effort. Another advantage to this approach is that it can provide answers to “what if” questions rapidly and with little computational cost. Key features: Presents a new fundamental vision on conceptual airplane design optimization Provides an overview of advanced technologies for propulsion and reducing aerodynamic drag Offers insight into the derivation of design sensitivity information Emphasizes design based on first principles Considers pros and cons of innovative configurations Reconsiders optimum cruise performance at transonic Mach numbers Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes advances understanding of the initial optimization of civil airplanes and is a must-have reference for aerospace engineering students, applied researchers, aircraft design engineers and analysts.
Publisher: John Wiley & Sons
ISBN: 1118568095
Category : Technology & Engineering
Languages : en
Pages : 412
Book Description
Although the overall appearance of modern airliners has not changed a lot since the introduction of jetliners in the 1950s, their safety, efficiency and environmental friendliness have improved considerably. Main contributors to this have been gas turbine engine technology, advanced materials, computational aerodynamics, advanced structural analysis and on-board systems. Since aircraft design became a highly multidisciplinary activity, the development of multidisciplinary optimization (MDO) has become a popular new discipline. Despite this, the application of MDO during the conceptual design phase is not yet widespread. Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes presents a quasi-analytical optimization approach based on a concise set of sizing equations. Objectives are aerodynamic efficiency, mission fuel, empty weight and maximum takeoff weight. Independent design variables studied include design cruise altitude, wing area and span and thrust or power loading. Principal features of integrated concepts such as the blended wing and body and highly non-planar wings are also covered. The quasi-analytical approach enables designers to compare the results of high-fidelity MDO optimization with lower-fidelity methods which need far less computational effort. Another advantage to this approach is that it can provide answers to “what if” questions rapidly and with little computational cost. Key features: Presents a new fundamental vision on conceptual airplane design optimization Provides an overview of advanced technologies for propulsion and reducing aerodynamic drag Offers insight into the derivation of design sensitivity information Emphasizes design based on first principles Considers pros and cons of innovative configurations Reconsiders optimum cruise performance at transonic Mach numbers Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes advances understanding of the initial optimization of civil airplanes and is a must-have reference for aerospace engineering students, applied researchers, aircraft design engineers and analysts.
Airplane Aerodynamics and Performance
Author: Jan Roskam
Publisher: DARcorporation
ISBN: 9781884885440
Category : Science
Languages : en
Pages : 748
Book Description
Publisher: DARcorporation
ISBN: 9781884885440
Category : Science
Languages : en
Pages : 748
Book Description
Computational Aerodynamic Modeling of Aerospace Vehicles
Author: Mehdi Ghoreyshi
Publisher: MDPI
ISBN: 3038976105
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.
Publisher: MDPI
ISBN: 3038976105
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.