Airborne Measurement and Interpretation of Peroxy Radical Concentrations with a Focus on the Oxidation Mechanisms in the Asian Free Troposphere

Airborne Measurement and Interpretation of Peroxy Radical Concentrations with a Focus on the Oxidation Mechanisms in the Asian Free Troposphere PDF Author: Midhun George
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Hydroperoxyl (HO2) and organic peroxy (RO2, where R stands for any organic group) radicals are highly reactive molecules produced in the oxidation of many compounds in the troposphere. They participate in the catalytic cycle producing or destroying ozone (O3) in the troposphere. Thus, HO2 and RO2 measurements provide unique information about the chemical processing of an air mass. Over the last decades, the understanding of the role of HO2 and RO2 in the chemical processes in the planetary boundary layer (PBL) has improved through ground-based in-situ measurements. However, the number of unequivocal measurements of peroxy radicals in the free troposphere is still quite limited. Measurements from airborne platforms offer a unique opportunity to measure HO2 and RO2 together with other relevant trace gases to test and improve the understanding of their chemistry in the free troposphere. During this doctoral study, an extensive set of airborne RO2* (RO2* = HO2 + ∑RO2, where RO2 represents the organic peroxy radicals reacting with NO to produce NO2) measurements in the PBL and free troposphere was acquired, analysed and interpreted. The RO2* measurements were made using the Peroxy Radical Chemical Enhancement and Absorption Spectrometer (PeRCEAS) developed at the Institut für Umweltphysik (IUP) of the University of Bremen. PeRCEAS has successfully deployed onboard the High Altitude LOng range research aircraft (HALO) in three research campaigns: the Oxidation Mechanism Observations (OMO) Asia and the Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales (EMeRGe) field missions in Europe and Asia. The PeRCEAS instrument was characterised and calibrated under atmospherically representative conditions in the laboratory to assure data quality, reproducibility, accuracy and to define optimal operating conditions for the airborne measurements. PeRCEAS successfully measured RO2* in 33 HALO flights. RO2* mixing ratios of up to 120 pmole mole-1 were measured in air masses having different origins, chemical compositions and physical conditions in Europe and Asia. The RO2* measurements, the simultaneous measurements of other relevant trace gases, aerosol concentration, photolysis frequencies and other meteorological parameters were synergistically analysed to identify the chemical processes controlling the amount of RO2*. From the analysis, it was found that RO2* is primarily produced following the photolysis of ozone (O3), formaldehyde (HCHO), glyoxal (CHOCHO), and nitrous acid (HONO) in the air masses investigated. The estimate for the contribution of O3 photolysis to RO2* production rate is > 40 % in the PBL and 40% in the free troposphere. This reduction is explained by the decrease in the water vapour concentration ([H2O]) as a function of altitude. Subsequently, the RO2* mixing ratios in the air masses measured during the EMeRGe in Asia and Europe campaigns were calculated assuming a photostationary steady-state (PSS) for RO2*. The RO2* production from precursor photolysis, the loss through HO2 - HO2, RO2 - RO2 and HO2 - RO2 reactions, the hydroxyl radical (OH) and organic oxy-radicals (RO) loss during the radical interconversion, and HO2 uptake on aerosol were considered for the calculation of RO2*. The calculations were constrained by the simultaneous measurements of photolysis frequencies, trace gas concentrations and aerosol particle number concentrations onboard HALO. Case studies confirmed the validity of the PSS assumption for air masses having different chemical compositions under different physical conditions. The RO2* calculated are generally in excellent agreement with the RO2* measurements. An experimental budget analysis was performed to estimate the main loss processes of RO2* by introducing the RO2* measurements in the PSS equation. Except for the measurements inside pollution plumes with NO 800 pmole mole-1 or aerosol particle number concentration > 800 particles cm-3, the HO2 - RO2 and HO2 - HO2 were the dominant RO2* loss process during both EMeRGe Asia and Europe. The RO2* losses through HO2 uptake on aerosol were higher in the pollution outflows measured in Asia than in Europe. This is attributed to the higher aerosol concentrations observed in the air masses probed during EMeRGe in Asia. The contribution from the HO2 uptake on aerosol increases up to 60 % for an assumed aerosol uptake coefficient of 0.24 inside pollution plumes in Asia, where the aerosol particle number concentration is > 1000 particles cm-3. In Europe, the OH - NOx reactions were the dominant RO2* loss process in the pollution outflow. This finding is explained by the EMeRGe in Europe measurements being typically closer to anthropogenic emissions sources than in Asia, except for the case study of Taipei and Manila.

Airborne Measurement and Interpretation of Peroxy Radical Concentrations with a Focus on the Oxidation Mechanisms in the Asian Free Troposphere

Airborne Measurement and Interpretation of Peroxy Radical Concentrations with a Focus on the Oxidation Mechanisms in the Asian Free Troposphere PDF Author: Midhun George
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Hydroperoxyl (HO2) and organic peroxy (RO2, where R stands for any organic group) radicals are highly reactive molecules produced in the oxidation of many compounds in the troposphere. They participate in the catalytic cycle producing or destroying ozone (O3) in the troposphere. Thus, HO2 and RO2 measurements provide unique information about the chemical processing of an air mass. Over the last decades, the understanding of the role of HO2 and RO2 in the chemical processes in the planetary boundary layer (PBL) has improved through ground-based in-situ measurements. However, the number of unequivocal measurements of peroxy radicals in the free troposphere is still quite limited. Measurements from airborne platforms offer a unique opportunity to measure HO2 and RO2 together with other relevant trace gases to test and improve the understanding of their chemistry in the free troposphere. During this doctoral study, an extensive set of airborne RO2* (RO2* = HO2 + ∑RO2, where RO2 represents the organic peroxy radicals reacting with NO to produce NO2) measurements in the PBL and free troposphere was acquired, analysed and interpreted. The RO2* measurements were made using the Peroxy Radical Chemical Enhancement and Absorption Spectrometer (PeRCEAS) developed at the Institut für Umweltphysik (IUP) of the University of Bremen. PeRCEAS has successfully deployed onboard the High Altitude LOng range research aircraft (HALO) in three research campaigns: the Oxidation Mechanism Observations (OMO) Asia and the Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales (EMeRGe) field missions in Europe and Asia. The PeRCEAS instrument was characterised and calibrated under atmospherically representative conditions in the laboratory to assure data quality, reproducibility, accuracy and to define optimal operating conditions for the airborne measurements. PeRCEAS successfully measured RO2* in 33 HALO flights. RO2* mixing ratios of up to 120 pmole mole-1 were measured in air masses having different origins, chemical compositions and physical conditions in Europe and Asia. The RO2* measurements, the simultaneous measurements of other relevant trace gases, aerosol concentration, photolysis frequencies and other meteorological parameters were synergistically analysed to identify the chemical processes controlling the amount of RO2*. From the analysis, it was found that RO2* is primarily produced following the photolysis of ozone (O3), formaldehyde (HCHO), glyoxal (CHOCHO), and nitrous acid (HONO) in the air masses investigated. The estimate for the contribution of O3 photolysis to RO2* production rate is > 40 % in the PBL and 40% in the free troposphere. This reduction is explained by the decrease in the water vapour concentration ([H2O]) as a function of altitude. Subsequently, the RO2* mixing ratios in the air masses measured during the EMeRGe in Asia and Europe campaigns were calculated assuming a photostationary steady-state (PSS) for RO2*. The RO2* production from precursor photolysis, the loss through HO2 - HO2, RO2 - RO2 and HO2 - RO2 reactions, the hydroxyl radical (OH) and organic oxy-radicals (RO) loss during the radical interconversion, and HO2 uptake on aerosol were considered for the calculation of RO2*. The calculations were constrained by the simultaneous measurements of photolysis frequencies, trace gas concentrations and aerosol particle number concentrations onboard HALO. Case studies confirmed the validity of the PSS assumption for air masses having different chemical compositions under different physical conditions. The RO2* calculated are generally in excellent agreement with the RO2* measurements. An experimental budget analysis was performed to estimate the main loss processes of RO2* by introducing the RO2* measurements in the PSS equation. Except for the measurements inside pollution plumes with NO 800 pmole mole-1 or aerosol particle number concentration > 800 particles cm-3, the HO2 - RO2 and HO2 - HO2 were the dominant RO2* loss process during both EMeRGe Asia and Europe. The RO2* losses through HO2 uptake on aerosol were higher in the pollution outflows measured in Asia than in Europe. This is attributed to the higher aerosol concentrations observed in the air masses probed during EMeRGe in Asia. The contribution from the HO2 uptake on aerosol increases up to 60 % for an assumed aerosol uptake coefficient of 0.24 inside pollution plumes in Asia, where the aerosol particle number concentration is > 1000 particles cm-3. In Europe, the OH - NOx reactions were the dominant RO2* loss process in the pollution outflow. This finding is explained by the EMeRGe in Europe measurements being typically closer to anthropogenic emissions sources than in Asia, except for the case study of Taipei and Manila.

Study of the Nature and Roles of Peroxy Radicals in the Atmosphere Towards the Understanding of Oxidant Formation Using Laser-flash Photolysis and LIF Detection Technique

Study of the Nature and Roles of Peroxy Radicals in the Atmosphere Towards the Understanding of Oxidant Formation Using Laser-flash Photolysis and LIF Detection Technique PDF Author: Koji Miyazaki
Publisher:
ISBN:
Category :
Languages : en
Pages : 89

Get Book Here

Book Description
Peroxy radicals RO2 (with R = H or CxHy) play an important role in the photo-oxidation cycles of the troposphere. They are produced mainly via the atmospheric oxidation of hydrocarbons and carbon monoxide by OH radicals and subsequent reactions with O2. They can further react with NO to produce NO2, witch is an important reaction of tropospheric ozone generation. To understand the mechanism of this tropospheric ozone generation, precise and accurate measurements of ambient peroxy radical concentrations are essential. And not only atmospheric concentration measurements but also atmospheric kinetics studies such as lifetime measurements of peroxy radicals are necessary. Recent publications show big differences between measured peroxy radical concentrations and those calculated with chemical models. These could be caused by missing reaction pathways and uncertainties in reaction yields and rate constants. To investigate these missing reactions and the uncertainties in known peroxy radical reactions via ambient measurements, newly developed two instruments as described below are applied. One is a technique for the selective measurement of atmospheric peroxy radical concentrations of HO2 and RO2 using the PERCA technique. HO2 radicals are selectively removed by using a glass denuder to achieve the selective measurement. The other one is a technique for total HO2 loss rate measurement in the atmosphere by using laser-flash photolysis and LIF detection of HO2. Generated HO2 radicals by laser-flash photolysis react with ambient reactive species such as NOX in the reaction tube. HO2 loss is measured using LIF at 308 nm coupled with chemical conversion with NO.

Chemical Processes in Atmospheric Oxidation

Chemical Processes in Atmospheric Oxidation PDF Author: Georges Le Bras
Publisher: Springer Science & Business Media
ISBN: 3642592163
Category : Science
Languages : en
Pages : 316

Get Book Here

Book Description
Oxidation and removal of atmospheric constituents involve complex sequences of reactions which can lead to the production of photo-oxidants such as ozone. In order to understand and model these complex reaction sequences, it is necessary to have a comprehensive understanding of reaction mechanisms and accurate estimates of kinetic parameters for relevant gas-phase atmospheric reactions. This book presents recent advances in the field and includes the following topics: e.g. the oxidation of simple organic compounds, NOx kinetics and mechanisms, OH radical production and rate constants for the OH attack on more complex organic compounds, peroxy and alkoxy radical reactions, photo-oxidation of aromatic and biogenic compounds, and the interaction between radical species.

The Measurement of Peroxy Radicals in Remote Atmosphere

The Measurement of Peroxy Radicals in Remote Atmosphere PDF Author: Arunasalam Karunaharan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Peroxy radicals act as chain carriers in trace gas oxidation reactions. Total peroxy radicals are HO2 + RO2. HO2 is the hydro peroxy radical and RO2 is the family of alkyl peroxy radicals, where R is an alkyl group. The oxidation chemistry driven by peroxy radicals is vital for controlling tropospheric ozone production/loss rates. The thesis details the University of Leicester PEroxy Radical Chemical Amplifier (PERCA (Version 3.5)) instrument. Peroxy radical measurements using a single- and dualchannel PERCA instrument were taken in two relatively clean sites: the tropical rainforest boundary layer in Borneo for two campaigns in 2008 and the tropical marine boundary layer at Cape Verde for three campaigns in 2009. In the tropical rainforest boundary layer in Borneo, the diurnal cycle of peroxy radicals' concentrations showed an asymmetric shape that was considerably shifted towards the afternoon owing to the high [HO2+RO2] measured for midday, these can persist during the afternoon under low NOx conditions. Night-time [HO2+RO2] were measured up to 29 pptv (parts per trillion by volume). The calculation of production and loss terms in the ozone budget indicated that there was net ozone production in the rainforest. Ozone production rates were greatest when [NOx] were high, while increasing [isoprene] decreased ozone production. The peroxy radical measurements for the Seasonal Oxidant Study (SOS) campaigns at Cape Verde show a diurnal cycle that reaches a maximum at midday and a minimum during the night. Net ozone production was negative (i.e. an ozone loss) and was maximised for summer months. An analysis of the Cape Verde ozone loss rate calculated with and without including halogen species is presented, and concludes that whilst ozone production was mainly NOx controlled, halogen chemistry could have a major contribution to the ozone loss.

Organic Peroxy Radicals

Organic Peroxy Radicals PDF Author: P. D. Lightfoot
Publisher:
ISBN: 9789282656815
Category : Peroxides
Languages : en
Pages : 157

Get Book Here

Book Description


Organic Peroxy Radicals

Organic Peroxy Radicals PDF Author: P. D. Lightfoot
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description


Volatile Organic Compounds in the Atmosphere

Volatile Organic Compounds in the Atmosphere PDF Author: Ralf Koppmann
Publisher: John Wiley & Sons
ISBN: 0470994150
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
Every day, large quantities of volatile organic compounds (VOCs) are emitted into the atmosphere from both anthropogenic and natural sources. The formation of gaseous and particulate secondary products caused by oxidation of VOCs is one of the largest unknowns in the quantitative prediction of the earth’s climate on a regional and global scale, and on the understanding of local air quality. To be able to model and control their impact, it is essential to understand the sources of VOCs, their distribution in the atmosphere and the chemical transformations which remove these compounds from the atmosphere. In recent years techniques for the analysis of organic compounds in the atmosphere have been developed to increase the spectrum of detectable compounds and their detection limits. New methods have been introduced to increase the time resolution of those measurements and to resolve more complex mixtures of organic compounds. Volatile Organic Compounds in the Atmosphere describes the current state of knowledge of the chemistry of VOCs as well as the methods and techniques to analyse gaseous and particulate organic compounds in the atmosphere. The aim is to provide an authoritative review to address the needs of both graduate students and active researchers in the field of atmospheric chemistry research.

Surface Water Photochemistry

Surface Water Photochemistry PDF Author: Paola Calza
Publisher: Royal Society of Chemistry
ISBN: 1782620435
Category : Nature
Languages : en
Pages : 310

Get Book Here

Book Description
Borne out of the current widespread interest in the pollution of water bodies, this book explores the latest research concerning the photochemical fate of organic pollutants in surface water. The main objective is to give insight into both the functioning of ecosystems and the behaviour of emerging pollutants in those ecosystems. Particular importance is dedicated to techniques that can be used in the field and in the laboratory for the detection of pollutants and of their transformation intermediates. The inclusion of photochemical processes that have not gained previous coverage will afford the reader novel insights, whilst the focus on modelling and transformation intermediates will ensure the title's relevance to academics, the chemical manufacturing industries and environmental assessment experts alike.

First Principles of Meteorology and Air Pollution

First Principles of Meteorology and Air Pollution PDF Author: Mihalis Lazaridis
Publisher: Springer Science & Business Media
ISBN: 9400701624
Category : Science
Languages : en
Pages : 368

Get Book Here

Book Description
This book’s main objective is to decipher for the reader the main processes in the atmosphere and the quantification of air pollution effects on humans and the environment, through first principles of meteorology and modelling/measurement approaches. The understanding of the complex sequence of events, starting from the emission of air pollutants into the atmosphere to the human health effects as the final event, is necessary for the prognosis of potential risk to humans from specific chemical compounds and mixtures of them. It fills a gap in the literature by providing a solid grounding in the first principles of meteorology and air pollution, making it particularly useful for undergraduate students. Its broad scope makes it a valuable text in many related disciplines, containing a comprehensive and integrated methodology to study the first principles of air pollution, meteorology, indoor air pollution, and human exposure. Problem-solving exercises help to reinforce concepts.

Chemistry and Radiation Changes in the Ozone Layer

Chemistry and Radiation Changes in the Ozone Layer PDF Author: Christos S. Zerefos
Publisher: Springer Science & Business Media
ISBN: 9780792365136
Category : Science
Languages : en
Pages : 420

Get Book Here

Book Description
Recent studies have demonstrated a link between ozone changes caused by human activities and changing UV levels at the Earth's surface, as well as a link to climate through changes in radiative forcing and links to changes in chemical composition. This book draws together key scientists who provide state of the art contributions on the variable ozone layer and the interplay of longwave and shortwave radiative interactions which link ozone, the climate and UV issues.