AI and Machine Learning for On-Device Development

AI and Machine Learning for On-Device Development PDF Author: Laurence Moroney
Publisher: "O'Reilly Media, Inc."
ISBN: 1098101715
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
Chapter 2. Introduction to Computer Vision -- Using Neurons for Vision -- Your First Classifier: Recognizing Clothing Items -- The Data: Fashion MNIST -- A Model Architecture to Parse Fashion MNIST -- Coding the Fashion MNIST Model -- Transfer Learning for Computer Vision -- Summary -- Chapter 3. Introduction to ML Kit -- Building a Face Detection App on Android -- Step 1: Create the App with Android Studio -- Step 2: Add and Configure ML Kit -- Step 3: Define the User Interface -- Step 4: Add the Images as Assets -- Step 5: Load the UI with a Default Picture.

AI and Machine Learning for On-Device Development

AI and Machine Learning for On-Device Development PDF Author: Laurence Moroney
Publisher: "O'Reilly Media, Inc."
ISBN: 1098101715
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
Chapter 2. Introduction to Computer Vision -- Using Neurons for Vision -- Your First Classifier: Recognizing Clothing Items -- The Data: Fashion MNIST -- A Model Architecture to Parse Fashion MNIST -- Coding the Fashion MNIST Model -- Transfer Learning for Computer Vision -- Summary -- Chapter 3. Introduction to ML Kit -- Building a Face Detection App on Android -- Step 1: Create the App with Android Studio -- Step 2: Add and Configure ML Kit -- Step 3: Define the User Interface -- Step 4: Add the Images as Assets -- Step 5: Load the UI with a Default Picture.

AI and Machine Learning for Coders

AI and Machine Learning for Coders PDF Author: Laurence Moroney
Publisher: O'Reilly Media
ISBN: 1492078166
Category : Computers
Languages : en
Pages : 393

Get Book Here

Book Description
If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving

AI and Machine Learning for On-Device Development

AI and Machine Learning for On-Device Development PDF Author: Laurence Moroney
Publisher: O'Reilly Media
ISBN: 9781098101749
Category : Computers
Languages : en
Pages : 300

Get Book Here

Book Description
AI is nothing without somewhere to run it. Now that mobile devices have become the primary computing device for most people, it's essential that mobile developers add AI to their toolbox. This insightful book is your guide to creating models and running them on popular mobile platforms such as iOS and Android. Laurence Moroney, lead AI advocate at Google, offers an introduction to machine learning techniques and tools, then walks you through writing Android and iOS apps powered by common ML models like computer vision and text recognition, using tools such as ML Kit, TensorFlow Lite, and Core ML. If you're a mobile developer, this book will help you take advantage of the ML revolution today. Explore the options for implementing ML and AI on mobile devices--and when to use each Create ML models for iOS and Android Write ML Kit and TensorFlow Lite apps for iOS and Android and Core ML/Create ML apps for iOS Understand how to choose the best techniques and tools for your use case: on-device inference versus cloud-based inference, high-level APIs versus low-level APIs, and more Learn privacy and ethics best practices for ML on devices

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare PDF Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385

Get Book Here

Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

TinyML

TinyML PDF Author: Pete Warden
Publisher: O'Reilly Media
ISBN: 1492052019
Category : Computers
Languages : en
Pages : 504

Get Book Here

Book Description
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Machine Learning by Tutorials (Second Edition)

Machine Learning by Tutorials (Second Edition) PDF Author: raywenderlich Tutorial Team
Publisher:
ISBN: 9781942878933
Category :
Languages : en
Pages :

Get Book Here

Book Description
Learn Machine Learning!Machine learning is one of those topics that can be daunting at first blush. It's not clear where to start, what path someone should take and what APIs to learn in order to get started teaching machines how to learn.This is where Machine Learning by Tutorials comes in! In this book, we'll hold your hand through a number of tutorials, to get you started in the world of machine learning. We'll cover a wide range of popular topics in the field of machine learning, while developing apps that work on iOS devices.Who This Book Is ForThis books is for the intermediate iOS developer who already knows the basics of iOS and Swift development, but wants to understand how machine learning works.Topics covered in Machine Learning by TutorialsCoreML: Learn how to add a machine learning model to your iOS apps, and how to use iOS APIs to access it.Create ML: Learn how to create your own model using Apple's Create ML Tool.Turi Create and Keras: Learn how to tune parameters to improve your machine learning model using more advanced tools.Image Classification: Learn how to apply machine learning models to predict objects in an image.Convolutional Networks: Learn advanced machine learning techniques for predicting objects in an image with Convolutional Neural Networks (CNNs).Sequence Classification: Learn how you can use recurrent neural networks (RNNs) to classify motion from an iPhone's motion sensor.Text-to-text Transform: Learn how to use machine learning to convert bodies of text between two languages.By the end of this book, you'll have a firm understanding of what machine learning is, what it can and cannot do, and how you can use machine learning in your next app!

Regulating Artificial Intelligence

Regulating Artificial Intelligence PDF Author: Thomas Wischmeyer
Publisher: Springer Nature
ISBN: 3030323617
Category : Law
Languages : en
Pages : 391

Get Book Here

Book Description
This book assesses the normative and practical challenges for artificial intelligence (AI) regulation, offers comprehensive information on the laws that currently shape or restrict the design or use of AI, and develops policy recommendations for those areas in which regulation is most urgently needed. By gathering contributions from scholars who are experts in their respective fields of legal research, it demonstrates that AI regulation is not a specialized sub-discipline, but affects the entire legal system and thus concerns all lawyers. Machine learning-based technology, which lies at the heart of what is commonly referred to as AI, is increasingly being employed to make policy and business decisions with broad social impacts, and therefore runs the risk of causing wide-scale damage. At the same time, AI technology is becoming more and more complex and difficult to understand, making it harder to determine whether or not it is being used in accordance with the law. In light of this situation, even tech enthusiasts are calling for stricter regulation of AI. Legislators, too, are stepping in and have begun to pass AI laws, including the prohibition of automated decision-making systems in Article 22 of the General Data Protection Regulation, the New York City AI transparency bill, and the 2017 amendments to the German Cartel Act and German Administrative Procedure Act. While the belief that something needs to be done is widely shared, there is far less clarity about what exactly can or should be done, or what effective regulation might look like. The book is divided into two major parts, the first of which focuses on features common to most AI systems, and explores how they relate to the legal framework for data-driven technologies, which already exists in the form of (national and supra-national) constitutional law, EU data protection and competition law, and anti-discrimination law. In the second part, the book examines in detail a number of relevant sectors in which AI is increasingly shaping decision-making processes, ranging from the notorious social media and the legal, financial and healthcare industries, to fields like law enforcement and tax law, in which we can observe how regulation by AI is becoming a reality.

Accelerating Software Quality

Accelerating Software Quality PDF Author: Eran Kinsbruner
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 357

Get Book Here

Book Description
The book "Accelerating Software Quality: Machine Learning and Artificial Intelligence in the Age of DevOps" is a complete asset for software developers, testers, and managers that are on their journey to a more mature DevOps workflow, and struggle with better automation and data-driven decision making. DevOps is a mature process across the entire market, however, with existing Non-AI/ML technologies and models, it comes short in expediting release cycle, identifying productivity gaps and addressing them. This book, that was implemented by myself with the help of leaders from the DevOps and test automation space, is covering topics from basic introduction to AI and ML in software development and testing, implications of AI and ML on existing apps, processes, and tools, practical tips in applying commercial and open-source AI/ML tools within existing tool chain, chat-bots testing, visual based testing using AI, automated security scanning for vulnerabilities, automated code reviews, API testing and management using AI/ML, reducing effort and time through test impact analysis (TIA), robotic process automation (RPA), AIOps for smarter code deployments and production defects prevention, and many more.When properly leveraging such tools, DevOps teams can benefit from greater code quality and functional and non-functional test automation coverage. This increases their release cycle velocity, reduces noise and software waste, and enhances their app quality.The book is divided into 3 main sections: *Section 1 covers the fundamentals of AI and ML in software development and testing. It includes introductions, definitions, 101 for testing AI-Based applications, classifications of AI/ML and defects that are tied to AI/ML, and more.*Section 2 focuses on practical advises and recommendations for using AI/ML based solutions within software development activities. This section includes topics like visual AI test automation, AI in test management, testing conversational AI applications, RPA benefits, API testing and much more.*Section 3 covers the more advanced and future-looking angles of AI and ML with projections and unique use cases. Among the topics in this section are AI and ML in logs observability, AIOps benefits to an entire DevOps teams, how to maintain AI/ML test automation, Test impact analysis with AI, and more.The book is packed with many proven best practices, real life examples, and many other open source and commercial solution recommendations that are set to shape the future of DevOps together with ML/AI

Essentials of Economics

Essentials of Economics PDF Author: Paul Krugman
Publisher: Macmillan
ISBN: 1429218290
Category : Business & Economics
Languages : en
Pages : 892

Get Book Here

Book Description
Check out preview content for Essentials of Economics here. Essentials of Economics brings the same captivating writing and innovative features of Krugman/Wells to the one-term economics course. Adapted by Kathryn Graddy, it is the ideal text for teaching basic economic principles, with enough real-world applications to help students see the applicability, but not so much detail as to overwhelm them. Watch a video interview of Paul Krugman here.

Machine Learning and the Internet of Medical Things in Healthcare

Machine Learning and the Internet of Medical Things in Healthcare PDF Author: Krishna Kant Singh
Publisher: Academic Press
ISBN: 012823217X
Category : Science
Languages : en
Pages : 290

Get Book Here

Book Description
Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled healthcare techniques and offers a mathematical and conceptual background of the latest technology. It describes machine learning techniques along with the emerging platform of the Internet of Medical Things used by practitioners and researchers worldwide. The book includes deep feed forward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology. It also presents the concepts of the Internet of Things, the set of technologies that develops traditional devices into smart devices. Finally, the book offers research perspectives, covering the convergence of machine learning and IoT. It also presents the application of these technologies in the development of healthcare frameworks. - Provides an introduction to the Internet of Medical Things through the principles and applications of machine learning - Explains the functions and applications of machine learning in various applications such as ultrasound imaging, biomedical signal processing, robotics, and biomechatronics - Includes coverage of the evolution of healthcare applications with machine learning, including Clinical Decision Support Systems, artificial intelligence in biomedical engineering, and AI-enabled connected health informatics, supported by real-world case studies