Advances in Proof Theory

Advances in Proof Theory PDF Author: Reinhard Kahle
Publisher: Birkhäuser
ISBN: 331929198X
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
The aim of this volume is to collect original contributions by the best specialists from the area of proof theory, constructivity, and computation and discuss recent trends and results in these areas. Some emphasis will be put on ordinal analysis, reductive proof theory, explicit mathematics and type-theoretic formalisms, and abstract computations. The volume is dedicated to the 60th birthday of Professor Gerhard Jäger, who has been instrumental in shaping and promoting logic in Switzerland for the last 25 years. It comprises contributions from the symposium “Advances in Proof Theory”, which was held in Bern in December 2013. ​Proof theory came into being in the twenties of the last century, when it was inaugurated by David Hilbert in order to secure the foundations of mathematics. It was substantially influenced by Gödel's famous incompleteness theorems of 1930 and Gentzen's new consistency proof for the axiom system of first order number theory in 1936. Today, proof theory is a well-established branch of mathematical and philosophical logic and one of the pillars of the foundations of mathematics. Proof theory explores constructive and computational aspects of mathematical reasoning; it is particularly suitable for dealing with various questions in computer science.

Advances in Proof Theory

Advances in Proof Theory PDF Author: Reinhard Kahle
Publisher: Birkhäuser
ISBN: 331929198X
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
The aim of this volume is to collect original contributions by the best specialists from the area of proof theory, constructivity, and computation and discuss recent trends and results in these areas. Some emphasis will be put on ordinal analysis, reductive proof theory, explicit mathematics and type-theoretic formalisms, and abstract computations. The volume is dedicated to the 60th birthday of Professor Gerhard Jäger, who has been instrumental in shaping and promoting logic in Switzerland for the last 25 years. It comprises contributions from the symposium “Advances in Proof Theory”, which was held in Bern in December 2013. ​Proof theory came into being in the twenties of the last century, when it was inaugurated by David Hilbert in order to secure the foundations of mathematics. It was substantially influenced by Gödel's famous incompleteness theorems of 1930 and Gentzen's new consistency proof for the axiom system of first order number theory in 1936. Today, proof theory is a well-established branch of mathematical and philosophical logic and one of the pillars of the foundations of mathematics. Proof theory explores constructive and computational aspects of mathematical reasoning; it is particularly suitable for dealing with various questions in computer science.

Advances in Proof-Theoretic Semantics

Advances in Proof-Theoretic Semantics PDF Author: Thomas Piecha
Publisher: Springer
ISBN: 331922686X
Category : Philosophy
Languages : en
Pages : 281

Get Book Here

Book Description
This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term itself was proposed by Schroeder-Heister in the 1980s. Proof-theoretic semantics explains the meaning of linguistic expressions in general and of logical constants in particular in terms of the notion of proof. This volume emerges from presentations at the Second International Conference on Proof-Theoretic Semantics in Tübingen in 2013, where contributing authors were asked to provide a self-contained description and analysis of a significant research question in this area. The contributions are representative of the field and should be of interest to logicians, philosophers, and mathematicians alike.

Proof Theory

Proof Theory PDF Author: Gaisi Takeuti
Publisher: Courier Corporation
ISBN: 0486490734
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
Focusing on Gentzen-type proof theory, this volume presents a detailed overview of creative works by author Gaisi Takeuti and other twentieth-century logicians. The text explores applications of proof theory to logic as well as other areas of mathematics. Suitable for advanced undergraduates and graduate students of mathematics, this long-out-of-print monograph forms a cornerstone for any library in mathematical logic and related topics. The three-part treatment begins with an exploration of first order systems, including a treatment of predicate calculus involving Gentzen's cut-elimination theorem and the theory of natural numbers in terms of Gödel's incompleteness theorem and Gentzen's consistency proof. The second part, which considers second order and finite order systems, covers simple type theory and infinitary logic. The final chapters address consistency problems with an examination of consistency proofs and their applications.

Proof Theory

Proof Theory PDF Author: Wolfram Pohlers
Publisher: Springer Science & Business Media
ISBN: 354069319X
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
The kernel of this book consists of a series of lectures on in?nitary proof theory which I gave during my time at the Westfalische ̈ Wilhelms–Universitat ̈ in Munster ̈ . It was planned as a successor of Springer Lecture Notes in Mathematics 1407. H- ever, when preparing it, I decided to also include material which has not been treated in SLN 1407. Since the appearance of SLN 1407 many innovations in the area of - dinal analysis have taken place. Just to mention those of them which are addressed in this book: Buchholz simpli?ed local predicativity by the invention of operator controlled derivations (cf. Chapter 9, Chapter 11); Weiermann detected applications of methods of impredicative proof theory to the characterization of the provable recursive functions of predicative theories (cf. Chapter 10); Beckmann improved Gentzen’s boundedness theorem (which appears as Stage Theorem (Theorem 6. 6. 1) in this book) to Theorem 6. 6. 9, a theorem which is very satisfying in itself - though its real importance lies in the ordinal analysis of systems, weaker than those treated here. Besides these innovations I also decided to include the analysis of the theory (? –REF) as an example of a subtheory of set theory whose ordinal analysis only 2 0 requires a ?rst step into impredicativity. The ordinal analysis of(? –FXP) of non- 0 1 0 monotone? –de?nable inductive de?nitions in Chapter 13 is an application of the 1 analysis of(? –REF).

Proof Theory and Algebra in Logic

Proof Theory and Algebra in Logic PDF Author: Hiroakira Ono
Publisher: Springer
ISBN: 9811379971
Category : Philosophy
Languages : en
Pages : 164

Get Book Here

Book Description
This book offers a concise introduction to both proof-theory and algebraic methods, the core of the syntactic and semantic study of logic respectively. The importance of combining these two has been increasingly recognized in recent years. It highlights the contrasts between the deep, concrete results using the former and the general, abstract ones using the latter. Covering modal logics, many-valued logics, superintuitionistic and substructural logics, together with their algebraic semantics, the book also provides an introduction to nonclassical logic for undergraduate or graduate level courses.The book is divided into two parts: Proof Theory in Part I and Algebra in Logic in Part II. Part I presents sequent systems and discusses cut elimination and its applications in detail. It also provides simplified proof of cut elimination, making the topic more accessible. The last chapter of Part I is devoted to clarification of the classes of logics that are discussed in the second part. Part II focuses on algebraic semantics for these logics. At the same time, it is a gentle introduction to the basics of algebraic logic and universal algebra with many examples of their applications in logic. Part II can be read independently of Part I, with only minimum knowledge required, and as such is suitable as a textbook for short introductory courses on algebra in logic.

Proof Theory

Proof Theory PDF Author: Wolfram Pohlers
Publisher: Springer
ISBN: 3540468250
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
Although this is an introductory text on proof theory, most of its contents is not found in a unified form elsewhere in the literature, except at a very advanced level. The heart of the book is the ordinal analysis of axiom systems, with particular emphasis on that of the impredicative theory of elementary inductive definitions on the natural numbers. The "constructive" consequences of ordinal analysis are sketched out in the epilogue. The book provides a self-contained treatment assuming no prior knowledge of proof theory and almost none of logic. The author has, moreover, endeavoured not to use the "cabal language" of proof theory, but only a language familiar to most readers.

Proof-theoretic Semantics

Proof-theoretic Semantics PDF Author: Nissim Francez
Publisher:
ISBN: 9781848901834
Category : Computers
Languages : en
Pages : 438

Get Book Here

Book Description
This book is a monograph on the topic of Proof-Theoretic Semantics, a theory of meaning constituting an alternative to the more traditional Model-Theoretic Semantics. The latter regards meaning as truth-conditions (in arbitrary models), the former regards meaning as canonical derivability conditions in a meaning-conferring natural-deduction proof-system. In the first part of the book, the Proof-Theoretic Semantics for logic is presented. It surveys the way a natural-deduction system can serve as meaning-conferring, and in particular analyses various criteria such a system has to meet in order to qualify as meaning-conferring. A central criterion is harmony, a balance between introduction-rules and elimination-rules. The theory is applied to various logics, e.g., relevance logic, and various proof systems such as multi-conclusion natural-deduction and bilateralism. The presentation is inspired by recent work by the author, and also surveys recent developments. In part two, the theory is applied to fragments of natural language, both extensional and intensional, a development based on the author's recent work. For example, conservativity of determiners, once set up in a proof-theoretic framework, becomes a provable property of all (regular) determiners. It is shown that meaning need not carry the heavy ontological load characteristic of Model-Theoretic Semantics of complex natural language constructs. Nissim Francez is an emeritus professor of computer science at the Technion, Israel Institute of Technology. At a certain point in his career he moved from research related to concurrent and distributed programming and program verification to research in computational linguistics, mainly formal semantics of natural language. In recent years, he has worked on Proof-Theoretic Semantics, in particular for natural language.

Ordinal Analysis with an Introduction to Proof Theory

Ordinal Analysis with an Introduction to Proof Theory PDF Author: Toshiyasu Arai
Publisher: Springer Nature
ISBN: 9811564590
Category : Philosophy
Languages : en
Pages : 327

Get Book Here

Book Description
This book provides readers with a guide to both ordinal analysis, and to proof theory. It mainly focuses on ordinal analysis, a research topic in proof theory that is concerned with the ordinal theoretic content of formal theories. However, the book also addresses ordinal analysis and basic materials in proof theory of first-order or omega logic, presenting some new results and new proofs of known ones.Primarily intended for graduate students and researchers in mathematics, especially in mathematical logic, the book also includes numerous exercises and answers for selected exercises, designed to help readers grasp and apply the main results and techniques discussed.

An Introduction to Proof Theory

An Introduction to Proof Theory PDF Author: Paolo Mancosu
Publisher: Oxford University Press
ISBN: 0192895931
Category : Mathematics
Languages : en
Pages : 431

Get Book Here

Book Description
"Proof theory is a central area of mathematical logic of special interest to philosophy . It has its roots in the foundational debate of the 1920s, in particular, in Hilbert's program in the philosophy of mathematics, which called for a formalization of mathematics, as well as for a proof, using philosophically unproblematic, "finitary" means, that these systems are free from contradiction. Structural proof theory investigates the structure and properties of proofs in different formal deductive systems, including axiomatic derivations, natural deduction, and the sequent calculus. Central results in structural proof theory are the normalization theorem for natural deduction, proved here for both intuitionistic and classical logic, and the cut-elimination theorem for the sequent calculus. In formal systems of number theory formulated in the sequent calculus, the induction rule plays a central role. It can be eliminated from proofs of sequents of a certain elementary form: every proof of an atomic sequent can be transformed into a "simple" proof. This is Hilbert's central idea for giving finitary consistency proofs. The proof requires a measure of proof complexity called an ordinal notation. The branch of proof theory dealing with mathematical systems such as arithmetic thus has come to be called ordinal proof theory. The theory of ordinal notations is developed here in purely combinatorial terms, and the consistency proof for arithmetic presented in detail"--

Arnon Avron on Semantics and Proof Theory of Non-Classical Logics

Arnon Avron on Semantics and Proof Theory of Non-Classical Logics PDF Author: Ofer Arieli
Publisher: Springer Nature
ISBN: 3030712583
Category : Philosophy
Languages : en
Pages : 369

Get Book Here

Book Description
This book is a collection of contributions honouring Arnon Avron’s seminal work on the semantics and proof theory of non-classical logics. It includes presentations of advanced work by some of the most esteemed scholars working on semantic and proof-theoretical aspects of computer science logic. Topics in this book include frameworks for paraconsistent reasoning, foundations of relevance logics, analysis and characterizations of modal logics and fuzzy logics, hypersequent calculi and their properties, non-deterministic semantics, algebraic structures for many-valued logics, and representations of the mechanization of mathematics. Avron’s foundational and pioneering contributions have been widely acknowledged and adopted by the scientific community. His research interests are very broad, spanning over proof theory, automated reasoning, non-classical logics, foundations of mathematics, and applications of logic in computer science and artificial intelligence. This is clearly reflected by the diversity of topics discussed in the chapters included in this book, all of which directly relate to Avron’s past and present works. This book is of interest to computer scientists and scholars of formal logic.