Advances in Neural Information Processing Systems 10

Advances in Neural Information Processing Systems 10 PDF Author: Michael I. Jordan
Publisher: MIT Press
ISBN: 9780262100762
Category : Computers
Languages : en
Pages : 1114

Get Book Here

Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. These proceedings contain all of the papers that were presented.

Advances in Neural Information Processing Systems 10

Advances in Neural Information Processing Systems 10 PDF Author: Michael I. Jordan
Publisher: MIT Press
ISBN: 9780262100762
Category : Computers
Languages : en
Pages : 1114

Get Book Here

Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. These proceedings contain all of the papers that were presented.

Advances in Neural Information Processing Systems 11

Advances in Neural Information Processing Systems 11 PDF Author: Michael S. Kearns
Publisher: MIT Press
ISBN: 9780262112451
Category : Computers
Languages : en
Pages : 1122

Get Book Here

Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.

Advances in Neural Information Processing Systems 12

Advances in Neural Information Processing Systems 12 PDF Author: Sara A. Solla
Publisher: MIT Press
ISBN: 9780262194501
Category : Computers
Languages : en
Pages : 1124

Get Book Here

Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.

Advances in Neural Information Processing Systems 17

Advances in Neural Information Processing Systems 17 PDF Author: Lawrence K. Saul
Publisher: MIT Press
ISBN: 9780262195348
Category : Computers
Languages : en
Pages : 1710

Get Book Here

Book Description
Papers presented at NIPS, the flagship meeting on neural computation, held in December 2004 in Vancouver.The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December, 2004 conference, held in Vancouver.

Advances in Neural Information Processing Systems 15

Advances in Neural Information Processing Systems 15 PDF Author: Suzanna Becker
Publisher: MIT Press
ISBN: 9780262025508
Category : Computers
Languages : en
Pages : 1738

Get Book Here

Book Description
Proceedings of the 2002 Neural Information Processing Systems Conference.

Theory of Neural Information Processing Systems

Theory of Neural Information Processing Systems PDF Author: A.C.C. Coolen
Publisher: OUP Oxford
ISBN: 9780191583001
Category : Neural networks (Computer science)
Languages : en
Pages : 596

Get Book Here

Book Description
Theory of Neural Information Processing Systems provides an explicit, coherent, and up-to-date account of the modern theory of neural information processing systems. It has been carefully developed for graduate students from any quantitative discipline, including mathematics, computer science, physics, engineering or biology, and has been thoroughly class-tested by the authors over a period of some 8 years. Exercises are presented throughout the text and notes on historical background and further reading guide the student into the literature. All mathematical details are included and appendices provide further background material, including probability theory, linear algebra and stochastic processes, making this textbook accessible to a wide audience.

Advances in Neural Information Processing Systems 7

Advances in Neural Information Processing Systems 7 PDF Author: Gerald Tesauro
Publisher: MIT Press
ISBN: 9780262201049
Category : Computers
Languages : en
Pages : 1180

Get Book Here

Book Description
November 28-December 1, 1994, Denver, Colorado NIPS is the longest running annual meeting devoted to Neural Information Processing Systems. Drawing on such disparate domains as neuroscience, cognitive science, computer science, statistics, mathematics, engineering, and theoretical physics, the papers collected in the proceedings of NIPS7 reflect the enduring scientific and practical merit of a broad-based, inclusive approach to neural information processing. The primary focus remains the study of a wide variety of learning algorithms and architectures, for both supervised and unsupervised learning. The 139 contributions are divided into eight parts: Cognitive Science, Neuroscience, Learning Theory, Algorithms and Architectures, Implementations, Speech and Signal Processing, Visual Processing, and Applications. Topics of special interest include the analysis of recurrent nets, connections to HMMs and the EM procedure, and reinforcement- learning algorithms and the relation to dynamic programming. On the theoretical front, progress is reported in the theory of generalization, regularization, combining multiple models, and active learning. Neuroscientific studies range from the large-scale systems such as visual cortex to single-cell electrotonic structure, and work in cognitive scientific is closely tied to underlying neural constraints. There are also many novel applications such as tokamak plasma control, Glove-Talk, and hand tracking, and a variety of hardware implementations, with particular focus on analog VLSI.

An Introduction to Neural Information Retrieval

An Introduction to Neural Information Retrieval PDF Author: Bhaskar Mitra
Publisher: Foundations and Trends (R) in Information Retrieval
ISBN: 9781680835328
Category :
Languages : en
Pages : 142

Get Book Here

Book Description
Efficient Query Processing for Scalable Web Search will be a valuable reference for researchers and developers working on This tutorial provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.

Efficient Processing of Deep Neural Networks

Efficient Processing of Deep Neural Networks PDF Author: Vivienne Sze
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254

Get Book Here

Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Optimization for Machine Learning

Optimization for Machine Learning PDF Author: Suvrit Sra
Publisher: MIT Press
ISBN: 026201646X
Category : Computers
Languages : en
Pages : 509

Get Book Here

Book Description
An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.