Advances in Independent Component Analysis and Learning Machines

Advances in Independent Component Analysis and Learning Machines PDF Author: Ella Bingham
Publisher: Academic Press
ISBN: 0128028076
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: - A unifying probabilistic model for PCA and ICA - Optimization methods for matrix decompositions - Insights into the FastICA algorithm - Unsupervised deep learning - Machine vision and image retrieval - A review of developments in the theory and applications of independent component analysis, and its influence in important areas such as statistical signal processing, pattern recognition and deep learning - A diverse set of application fields, ranging from machine vision to science policy data - Contributions from leading researchers in the field

Advances in Independent Component Analysis and Learning Machines

Advances in Independent Component Analysis and Learning Machines PDF Author: Ella Bingham
Publisher: Academic Press
ISBN: 0128028076
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: - A unifying probabilistic model for PCA and ICA - Optimization methods for matrix decompositions - Insights into the FastICA algorithm - Unsupervised deep learning - Machine vision and image retrieval - A review of developments in the theory and applications of independent component analysis, and its influence in important areas such as statistical signal processing, pattern recognition and deep learning - A diverse set of application fields, ranging from machine vision to science policy data - Contributions from leading researchers in the field

Advances in Independent Component Analysis

Advances in Independent Component Analysis PDF Author: Mark Girolami
Publisher: Springer Science & Business Media
ISBN: 1447104439
Category : Computers
Languages : en
Pages : 286

Get Book Here

Book Description
Independent Component Analysis (ICA) is a fast developing area of intense research interest. Following on from Self-Organising Neural Networks: Independent Component Analysis and Blind Signal Separation, this book reviews the significant developments of the past year. It covers topics such as the use of hidden Markov methods, the independence assumption, and topographic ICA, and includes tutorial chapters on Bayesian and variational approaches. It also provides the latest approaches to ICA problems, including an investigation into certain "hard problems" for the very first time. Comprising contributions from the most respected and innovative researchers in the field, this volume will be of interest to students and researchers in computer science and electrical engineering; research and development personnel in disciplines such as statistical modelling and data analysis; bio-informatic workers; and physicists and chemists requiring novel data analysis methods.

Independent Component Analysis

Independent Component Analysis PDF Author: Aapo Hyvärinen
Publisher: John Wiley & Sons
ISBN: 0471464198
Category : Science
Languages : en
Pages : 505

Get Book Here

Book Description
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.

Neural information processing [electronic resource]

Neural information processing [electronic resource] PDF Author: Nikil R. Pal
Publisher: Springer Science & Business Media
ISBN: 3540239316
Category : Computers
Languages : en
Pages : 1397

Get Book Here

Book Description
Annotation This book constitutes the refereed proceedings of the 11th International Conference on Neural Information Processing, ICONIP 2004, held in Calcutta, India in November 2004. The 186 revised papers presented together with 24 invited contributions were carefully reviewed and selected from 470 submissions. The papers are organized in topical sections on computational neuroscience, complex-valued neural networks, self-organizing maps, evolutionary computation, control systems, cognitive science, adaptive intelligent systems, biometrics, brain-like computing, learning algorithms, novel neural architectures, image processing, pattern recognition, neuroinformatics, fuzzy systems, neuro-fuzzy systems, hybrid systems, feature analysis, independent component analysis, ant colony, neural network hardware, robotics, signal processing, support vector machine, time series prediction, and bioinformatics.

Independent Component Analysis

Independent Component Analysis PDF Author: Stephen Roberts
Publisher: Cambridge University Press
ISBN: 9780521792981
Category : Computers
Languages : en
Pages : 358

Get Book Here

Book Description
Independent Component Analysis (ICA) has recently become an important tool for modelling and understanding empirical datasets. It is a method of separating out independent sources from linearly mixed data, and belongs to the class of general linear models. ICA provides a better decomposition than other well-known models such as principal component analysis. This self-contained book contains a structured series of edited papers by leading researchers in the field, including an extensive introduction to ICA. The major theoretical bases are reviewed from a modern perspective, current developments are surveyed and many case studies of applications are described in detail. The latter include biomedical examples, signal and image denoising and mobile communications. ICA is discussed in the framework of general linear models, but also in comparison with other paradigms such as neural network and graphical modelling methods. The book is ideal for researchers and graduate students in the field.

Computer Vision – ECCV 2018

Computer Vision – ECCV 2018 PDF Author: Vittorio Ferrari
Publisher: Springer
ISBN: 303001228X
Category : Computers
Languages : en
Pages : 861

Get Book Here

Book Description
The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2019

Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 PDF Author: Dinggang Shen
Publisher: Springer Nature
ISBN: 3030322394
Category : Computers
Languages : en
Pages : 851

Get Book Here

Book Description
The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019. The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: optical imaging; endoscopy; microscopy. Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression. Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging. Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis. Part V: computer assisted interventions; MIC meets CAI. Part VI: computed tomography; X-ray imaging.

New Innovations in AI, Aviation, and Air Traffic Technology

New Innovations in AI, Aviation, and Air Traffic Technology PDF Author: Khalid, Saifullah
Publisher: IGI Global
ISBN:
Category : Transportation
Languages : en
Pages : 552

Get Book Here

Book Description
The rapid advancement of technology, along with the increasing complexity of air traffic management present significant challenges in aviation management. As the industry continues to evolve, aviation professionals must stay updated with the latest advancements to ensure safe and efficient operations. However, accessing comprehensive and up-to-date resources can be difficult, leading to a knowledge gap that hinders the industry's progress. New Innovations in AI, Aviation, and Air Traffic Technology offers a solution to the challenges faced by aviation management professionals by providing a comprehensive overview of futuristic research trends in aviation management. Through case studies, simulations, and experimental results, we offer readers a detailed exploration of the latest trends in air traffic management, uncrewed aerial vehicles (UAVs), electric vehicles, and more. By providing a bridge between theory and practice, this book equips aviation professionals with the knowledge and tools needed to navigate and contribute to the rapidly evolving aviation industry.

Independent Component Analysis

Independent Component Analysis PDF Author: James V. Stone
Publisher: MIT Press
ISBN: 9780262693158
Category : Computers
Languages : en
Pages : 224

Get Book Here

Book Description
A tutorial-style introduction to a class of methods for extracting independent signals from a mixture of signals originating from different physical sources; includes MatLab computer code examples. Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals, or source signals. In so doing, this powerful method can extract the relatively small amount of useful information typically found in large data sets. The applications for ICA range from speech processing, brain imaging, and electrical brain signals to telecommunications and stock predictions. In Independent Component Analysis, Jim Stone presents the essentials of ICA and related techniques (projection pursuit and complexity pursuit) in a tutorial style, using intuitive examples described in simple geometric terms. The treatment fills the need for a basic primer on ICA that can be used by readers of varying levels of mathematical sophistication, including engineers, cognitive scientists, and neuroscientists who need to know the essentials of this evolving method. An overview establishes the strategy implicit in ICA in terms of its essentially physical underpinnings and describes how ICA is based on the key observations that different physical processes generate outputs that are statistically independent of each other. The book then describes what Stone calls "the mathematical nuts and bolts" of how ICA works. Presenting only essential mathematical proofs, Stone guides the reader through an exploration of the fundamental characteristics of ICA. Topics covered include the geometry of mixing and unmixing; methods for blind source separation; and applications of ICA, including voice mixtures, EEG, fMRI, and fetal heart monitoring. The appendixes provide a vector matrix tutorial, plus basic demonstration computer code that allows the reader to see how each mathematical method described in the text translates into working Matlab computer code.

Web and Big Data

Web and Big Data PDF Author: Xin Wang
Publisher: Springer Nature
ISBN: 3030602591
Category : Computers
Languages : en
Pages : 844

Get Book Here

Book Description
This two-volume set, LNCS 11317 and 12318, constitutes the thoroughly refereed proceedings of the 4th International Joint Conference, APWeb-WAIM 2020, held in Tianjin, China, in September 2020. Due to the COVID-19 pandemic the conference was organizedas a fully online conference. The 42 full papers presented together with 17 short papers, and 6 demonstration papers were carefully reviewed and selected from 180 submissions. The papers are organized around the following topics: Big Data Analytics; Graph Data and Social Networks; Knowledge Graph; Recommender Systems; Information Extraction and Retrieval; Machine Learning; Blockchain; Data Mining; Text Analysis and Mining; Spatial, Temporal and Multimedia Databases; Database Systems; and Demo.