Advanced Characterization and Modeling of Next Generation Lithium Ion Electrodes and Interfaces

Advanced Characterization and Modeling of Next Generation Lithium Ion Electrodes and Interfaces PDF Author: Thomas Andrew Wynn
Publisher:
ISBN:
Category :
Languages : en
Pages : 136

Get Book Here

Book Description
Lithium ion batteries have proven to be a paradigm shifting technology, enabling high energy density storage to power the handheld device and electric automotive revolutions. However relatively slow progress toward increased energy and power density has been made since the inception of the first functional lithium ion battery. Materials under consideration for next generation lithium ion batteries include anionic-redox-active cathodes, solid state electrolytes, and lithium metal anodes. Li-rich cathodes harness anionic redox, showing increased first charge capacity well beyond the redox capacity of traditional transition metal oxides, though suffer from severe capacity and voltage fade after the first cycle. This is in part attributed to oxygen evolution, driving surface reconstruction. Solid-state electrolytes (SSEs) offer the potential for safer devices, serving as physical barriers for dendrite penetration, while hoping to enable the lithium metal anode. The lithium metal naturally exhibits the highest volumetric energy density of all anode materials. Here, we employ simulation and advanced characterization methodologies to understand the fundamental properties of a variety of next generation lithium ion battery materials and devices leading to their successes or failures. Using density functional theory, the effect of cationic substitution on the propensity for oxygen evolution was explored. Improvement in Li-rich cathode performance is predicted and demonstrated through doping of 4d transition metal Mo. Next, lithium phosphorus oxynitride (LiPON), an SSE utilized in thin film batteries, was explored. LiPON has proven stable cycling against lithium metal anodes, though its stability is poorly understood. RF sputtered thin films of LiPON are examined via spectroscopic computational methods and nuclear magnetic resonance to reveal its atomic structure, ultimately responsible for its success as a thin film solid electrolyte. A new perspective on LiPON is presented, emphasizing its glassy nature and lack of long-range connectivity. Progress toward in situ methodologies for solid-state interfaces is described, and a protocol for FIB-produced nanobatteries is developed. Cryogenic methodologies are applied to a PEO/NCA composite electrode. Cryogenic focused ion beam was shown to preserve polymer structure and morphology, enabling accurate morphological quantification and preserving the crystallinity, as observed via TEM. Last, development of in situ solid-state interface characterization is discussed.

Advanced Characterization and Modeling of Next Generation Lithium Ion Electrodes and Interfaces

Advanced Characterization and Modeling of Next Generation Lithium Ion Electrodes and Interfaces PDF Author: Thomas Andrew Wynn
Publisher:
ISBN:
Category :
Languages : en
Pages : 136

Get Book Here

Book Description
Lithium ion batteries have proven to be a paradigm shifting technology, enabling high energy density storage to power the handheld device and electric automotive revolutions. However relatively slow progress toward increased energy and power density has been made since the inception of the first functional lithium ion battery. Materials under consideration for next generation lithium ion batteries include anionic-redox-active cathodes, solid state electrolytes, and lithium metal anodes. Li-rich cathodes harness anionic redox, showing increased first charge capacity well beyond the redox capacity of traditional transition metal oxides, though suffer from severe capacity and voltage fade after the first cycle. This is in part attributed to oxygen evolution, driving surface reconstruction. Solid-state electrolytes (SSEs) offer the potential for safer devices, serving as physical barriers for dendrite penetration, while hoping to enable the lithium metal anode. The lithium metal naturally exhibits the highest volumetric energy density of all anode materials. Here, we employ simulation and advanced characterization methodologies to understand the fundamental properties of a variety of next generation lithium ion battery materials and devices leading to their successes or failures. Using density functional theory, the effect of cationic substitution on the propensity for oxygen evolution was explored. Improvement in Li-rich cathode performance is predicted and demonstrated through doping of 4d transition metal Mo. Next, lithium phosphorus oxynitride (LiPON), an SSE utilized in thin film batteries, was explored. LiPON has proven stable cycling against lithium metal anodes, though its stability is poorly understood. RF sputtered thin films of LiPON are examined via spectroscopic computational methods and nuclear magnetic resonance to reveal its atomic structure, ultimately responsible for its success as a thin film solid electrolyte. A new perspective on LiPON is presented, emphasizing its glassy nature and lack of long-range connectivity. Progress toward in situ methodologies for solid-state interfaces is described, and a protocol for FIB-produced nanobatteries is developed. Cryogenic methodologies are applied to a PEO/NCA composite electrode. Cryogenic focused ion beam was shown to preserve polymer structure and morphology, enabling accurate morphological quantification and preserving the crystallinity, as observed via TEM. Last, development of in situ solid-state interface characterization is discussed.

Advancing Focused Ion Beam Characterization for Next Generation Lithium-Ion Batteries

Advancing Focused Ion Beam Characterization for Next Generation Lithium-Ion Batteries PDF Author: Jungwoo Lee
Publisher:
ISBN:
Category :
Languages : en
Pages : 164

Get Book Here

Book Description
Next generation lithium-ion batteries will take on a wide variety of roles to meet the increased requirements from growth in consumer electronics, electric vehicles, and utility storage for integrating intermittent renewable (solar and wind) power sources. The cost per watt-hour of commercial batteries have shown incremental improvement due to improved manufacturing design, though drastic increases in energy and power density are needed to satisfy projected demand. Solid-state electrolytes (SSE) are explored due to their potential to improve energy and power density through enabling alkali metal anodes, while mitigating safety and temperature stability concerns associated with conventional liquid electrolyte lithium-ion batteries. However, there are still significant scientific and engineering hurdles before the full potential of SSEs can be realized: primarily performance degradation from chemical and mechanical interfacial instability. We enable the use of solid-state thin film battery materials and devices as a model system for fundamental studies of bulk and interface properties because of their well-defined geometry and controlled chemical composition, eliminating any effects from polymeric binder or conductive agents. In this thesis, we explore the structural, mechanical, and electrochemical properties of thin film electrolytes amorphous lithium lanthanum titanate (a-LLTO) and lithium phosphorous oxynitride (LiPON) along with the fabrication of thin film batteries with various electrode chemistries. Using these devices we develop focused ion beam (FIB) as a technique to fabricate electrochemically active nanobatteries that enables in situ analysis in a FIB or transmission electron microscope (TEM) to couple local structural, morphological, and chemical phenomena. Further, one key advantage of SSEs is the potential to use a lithium metal anode. However, characterization of Li and Li/electrolyte interfaces is limited due to its intrinsic high chemical reactivity, low thermal stability, and low atomic number, making it prone to contamination and melting. Therefore, we demonstrate the ability of cryogenic focused ion beam (cryo-FIB) to process and characterize electrochemically deposited Li and Li metal based solid-state thin film devices.

Hard X-ray Photoelectron Spectroscopy (HAXPES)

Hard X-ray Photoelectron Spectroscopy (HAXPES) PDF Author: Joseph Woicik
Publisher: Springer
ISBN: 3319240439
Category : Science
Languages : en
Pages : 576

Get Book Here

Book Description
This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.

Multiscale Modeling of Lithium Metal Anode for Next-generation Battery Design

Multiscale Modeling of Lithium Metal Anode for Next-generation Battery Design PDF Author: Zhe Liu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Achieving smooth Li-plating without dendrite growth remains to be a grand challenge for developing the next-generation batteries based on Li metal anode. One of the main reasons is our inability to directly model and predict the atomistic and mesoscale mechanisms underlying the complex electroplating process involving concurrent ionic transport, redox reaction, and development of morphological instability. This dissertation presents a phase-field-based multiscale modeling framework to fundamentally understand the dendrite growth mechanism, theoretically interpret the experimental phenomena, and guide the Li metal battery design.The stability and functionality of the solid electrolyte interphase (SEI), i.e. the passivation layer between anode and electrolyte, play critical roles in maintaining a decent battery cycle life as well as calendar life. This becomes even more critical for Li metal anode, which is subjected to large volumetric and interfacial variations during Li plating and stripping. However, there is currently a lack of comprehensive understanding of Li metal/SEI interfaces and their electrochemical and mechanical properties, as well as the SEI growth mechanism at Li metal anode. In this thesis, we employed combined atomistic calculations and experimental techniques to study SEI. Using density function theory (DFT) calculations, we evaluated the interfacial energetics, density of states (DOS), and electrostatic potential profiles of two interfaces, LiF/Li and Li2CO3/Li, at Li metal anode. The calculation results suggest higher interface mechanical stability at the Li2CO3/Li interface but better electron tunneling leakage resistance at the LiF/Li interface. Experimentally, we employed an isotope-assisted time-of-flight secondary ion mass spectrometry (TOF SIMS) method to reveal a bottom-up formation mechanism of SEI growth. It is found that the topmost SEI near the electrolyte formed first and the SEI near the electrode formed later during the initial formation cycle. This growth mechanism was then correlated to the electrolyte one-electron and two-electron reduction reaction dynamics, which in turn explains the formation of two-layered organic-inorganic SEI composite structure. These results provide physical interpretation for the mesoscale phenomena and thus valuable insights for advanced electrode protective coating design.Continuum models have been widely used in attempts to understand and solve the Li dendrite growth problem at mesoscale. However, the limited availability and the accuracy of input physical parameters often limit the predictive power of existing continuum simulations. We hereby developed a multiscale model for a metal electrodeposition process based on the phase-field method and transition state theory by connecting the atomic level charge-transfer physics to the mesoscale morphological evolution. With this model, we discovered that the difference in cation de-solvation-induced exchange current is mainly responsible for the dramatic difference in dendritic Li-plating and smooth Mg-plating. This study not only reveals the physical origin of Li dendrite growth, but also provides a strategy to design dendrite-free Li-ion battery anodes guided by this multiscale model integrating the phase-field method and atomistic calculations.All-solid-state battery is a promising solution to suppress Li dendrite growth. However, recent experimental observation of mechanically-hard ceramic solid electrolytes such as LLZO indicates intergranular dendrite penetration. To understand the Li plating behavior in solid electrolytes, we further extended the multiscale phase-field model of Li dendrite growth by incorporating multiphase solid mechanics and explicit dendrite nucleation. This model helps elucidate the mechanism of major failure modes in a wide range of existing solid electrolyte systems, such as dendrite penetration, intergranular growth and isolated nucleation.

Next Generation Batteries

Next Generation Batteries PDF Author: Kiyoshi Kanamura
Publisher: Springer Nature
ISBN: 9813366680
Category : Technology & Engineering
Languages : en
Pages : 580

Get Book Here

Book Description
In this book, the development of next-generation batteries is introduced. Included are reports of investigations to realize high energy density batteries: Li-air, Li-sulfur, and all solid-state and metal anode (Mg, Al, Zn) batteries. Sulfide and oxide solid electrolytes are also reviewed.A number of relevant aspects of all solid-state batteries with a carbon anode or Li-metal anode are discussed and described: The formation of the cathode; the interface between the cathode (anode) and electrolyte; the discharge and charge mechanisms of the Li-air battery; the electrolyte system for the Li-air battery; and cell construction. The Li-sulfur battery involves a critical problem, namely, the dissolution of intermediates of sulfur during the discharge process. Here, new electrolyte systems for the suppression of intermediate dissolution are discussed. Li-metal batteries with liquid electrolytes also present a significant problem: the dendrite formation of lithium. New separators and electrolytes are introduced to improve the safety and rechargeability of the Li-metal anode. Mg, Al, and Zn metal anodes have been also applied to rechargeable batteries, and in this book, new metal anode batteries are introduced as the generation-after-next batteries.This volume is a summary of ALCA-SPRING projects, which constitute the most extensive research for next-generation batteries in Japan. The work presented in this book is highly informative and useful not only for battery researchers but also for researchers in the fields of electric vehicles and energy storage.

Lithium metal stabilization for next-generation lithium-based batteries: from fundamental chemistry to advanced characterization and effective protection

Lithium metal stabilization for next-generation lithium-based batteries: from fundamental chemistry to advanced characterization and effective protection PDF Author: Yu Yan
Publisher: OAE Publishing Inc.
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 32

Get Book Here

Book Description
Lithium (Li) metal-based rechargeable batteries hold significant promise to meet the ever-increasing demands for portable electronic devices, electric vehicles and grid-scale energy storage, making them the optimal alternatives for next-generation secondary batteries. Nevertheless, Li metal anodes currently suffer from major drawbacks, including safety concerns, capacity decay and lifespan degradation, which arise from uncontrollable dendrite growth, notorious side reactions and infinite volume variation, thereby limiting their current practical application. Numerous critical endeavors from different perspectives have been dedicated to developing highly stable Li metal anodes. Herein, a comprehensive overview of Li metal anodes regarding fundamental mechanisms, scientific challenges, characterization techniques, theoretical investigations and advanced strategies is systematically presented. First, the basic working principles of Li metal-based batteries are introduced. Specific attention is then paid to the fundamental understanding of and challenges facing Li metal anodes. Accordingly, advanced characterization approaches and theoretical computations are introduced to understand the fundamental mechanisms of dendrite growth and parasitic reactions. Recent key progress in Li anode protection is then comprehensively summarized and categorized to generate an overview of the respective superiorities and limitations of the various strategies. Furthermore, this review concludes the remaining obstacles and potential research directions for inspiring the innovation of Li metal anodes and endeavors to accomplish the practical application of next-generation Li-based batteries.

Materials for Lithium-Ion Batteries

Materials for Lithium-Ion Batteries PDF Author: Christian Julien
Publisher: Springer Science & Business Media
ISBN: 9780792366508
Category : Technology & Engineering
Languages : en
Pages : 658

Get Book Here

Book Description
A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.

Fast Ionic Conductors and Solid-Solid Interfaces Designed for Next Generation Solid-State Batteries

Fast Ionic Conductors and Solid-Solid Interfaces Designed for Next Generation Solid-State Batteries PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The EV Everywhere Grand Challenge requires a breakthrough in energy storage technology. State-of-the-art Li-ion technology is currently used in low volume production plug-in hybrid and niche high performance vehicles; however, the widespread adoption of electrified powertrains requires a four-fold increase in performance, 25% lower cost, and safer batteries without the possibility of combustion. One approach for this target is to develop solid-state batteries (SSBs) offering improved performance, reduced peripheral mass, and unprecedented safety. SSB could offer higher energy density, by enabling new cell designs, such as bipolar stacking, leading to reduced peripheral mass and volume. To enable SSBs, a crucial requirement is a fast-ion conducting solid electrolyte. To date, myriad solid-state electrolytes have been reported exhibiting Li ion conductivities approaching those of today's liquid electrolyte membranes. Moreover, several new materials are reported to have wide electrochemical window and single-ion mobility. Leveraging decades of research focused on Li-based electrodes for Li-ion batteries, the discovery of new solid-state electrolytes could enable access to these electrodes; specifically, Li metal and high voltage electrodes (>5V). However, transitioning SSBs from the laboratory to EVs requires answers to fundamental questions such as: (1) how does Li-ion transport through the solid electrolyte / solid electrode interface work? (2) will solid electrolytes enable bulk-scale Li metal anode and high voltage cathodes?, and (3) how will ceramic-based cells be manufactured in large-format battery packs? The purpose of this Research Topic is to provide new insights obtained through the fundamental understanding of materials chemistry, electrochemistry, advanced analysis and computational simulations. We hope these aspects will summarize current challenges and provide opportunities for future research to develop the next generation SSBs.

Resolving and Understanding Battery Interfaces and Nanoscale Heterogeneities

Resolving and Understanding Battery Interfaces and Nanoscale Heterogeneities PDF Author: Zewen Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Electrochemical energy technologies, such as batteries, are essential for decarbonizing our economy and enabling clean energy storage for a sustainable future. Underlying the battery technology are multiple coupled dynamic processes that span many length scales including electron transport, ionic diffusion, ion solvation/desolvation, surface adsorption, interfacial evolution and interphase formation, intermediate states, and phase/chemical transformations. The advancement in scientific understanding and technological innovations for batteries entail an atomic- and molecular-resolution understanding of the key materials and fundamental processes governing the operation and failure of the systems. However, these key components are often highly sensitive and remain difficult to resolve with conventional interrogation methods. The rapid progress in cryogenic electron microscopy (cryo-EM) for physical sciences starts to offer researchers new tools and methods to probe many otherwise inaccessible length scales and time scales of components and phenomena in electrochemical energy science. Specifically, weakly bonded and reactive materials, interfaces and phases that typically degrade under high energy electron-beam irradiation and environmental exposure can potentially be protected and stabilized by cryogenic methods. Such initial efforts bring up thrilling opportunities to address many crucial yet unanswered questions in electrochemical energy science, which can eventually lead to new scientific discoveries and technological breakthroughs. My PhD dissertation entails the use and the development of cryo-EM methods for batteries to gain functional insights into the critical battery interfaces, which may provide guidance and design principles for practical next-generation lithium battery chemistries. In Chapter 1, I will give an introduction to lithium batteries on the history and current limitations, and motivate the need to resolve the interfaces with high spatial and chemical resolution. In Chapter 2, I will briefly introduce transmission electron microscopy (TEM) and cryo-EM, as well as relevant analytical capabilities for the atomic resolution of structural and chemical characterization of materials. In Chapter 3, I will show how cryo-EM can be used to derive new insights into the cathode electrolyte interphase (CEI), allowing for new engineering principles for cathode interfacial protection. In Chapter 4, I will introduce method advancement in cryo-EM for batteries in which we incorporate liquid electrolytes into the investigation, and used Li metal anode solid-electrolyte interphase (SEI) analysis as an example to show how these studies can be leveraged to refine the SEI model and guide the electrolyte design and engineering for next generation batteries. In Chapter 5, I will talk about how we advance from 2D analysis into 3D, and use cryo-EM tomography (cryo-ET) to resolve nanoscale heterogeneities developed in Li metal anodes in 3D. In Chapter 6, I will conclude the dissertation with broader insights gained from my studies and an outlook for how we could push the boundary of understanding dynamic processes during battery operations to guide the rational design of next generation batteries.

Mechanics of Silicon Electrodes in Lithium Ion Batteries

Mechanics of Silicon Electrodes in Lithium Ion Batteries PDF Author: Yonghao An
Publisher:
ISBN:
Category : Electrodes
Languages : en
Pages : 140

Get Book Here

Book Description
As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change (anisotropic for the initial lithiation of crystal silicon), plastic flow or softening of material dependent on composition, electrochemically driven phase transformation between solid states, anisotropic or isotropic migration of atomic sharp interface, and mass diffusion of lithium atoms. Motivated by the promising prospect of the application and underlying interesting physics, mechanics coupled with multi-physics of silicon electrodes in lithium ion batteries is studied in this dissertation. For silicon electrodes with large size, diffusion controlled kinetics is assumed, and the coupled large deformation and mass transportation is studied. For crystal silicon with small size, interface controlled kinetics is assumed, and anisotropic interface reaction is studied, with a geometry design principle proposed. As a preliminary experimental validation, enhanced lithiation and fracture behavior of silicon pillars via atomic layer coatings and geometry design is studied, with results supporting the geometry design principle we proposed based on our simulations. Through the work documented here, a consistent description and understanding of the behavior of silicon electrode is given at continuum level and some insights for the future development of the silicon electrode are provided.