Author: Martin Hanke
Publisher: SIAM
ISBN: 1611974933
Category : Mathematics
Languages : en
Pages : 171
Book Description
Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.
A Taste of Inverse Problems
Author: Martin Hanke
Publisher: SIAM
ISBN: 1611974933
Category : Mathematics
Languages : en
Pages : 171
Book Description
Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.
Publisher: SIAM
ISBN: 1611974933
Category : Mathematics
Languages : en
Pages : 171
Book Description
Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.
Introduction to Inverse Problems in Imaging
Author: M. Bertero
Publisher: CRC Press
ISBN: 1000516350
Category : Science
Languages : en
Pages : 358
Book Description
Fully updated throughout and with several new chapters, this second edition of Introduction to Inverse Problems in Imaging guides advanced undergraduate and graduate students in physics, computer science, mathematics and engineering through the principles of linear inverse problems, in addition to methods of their approximate solution and their practical applications in imaging. This second edition contains new chapters on edge-preserving and sparsity-enforcing regularization in addition to maximum likelihood methods and Bayesian regularization for Poisson data. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of students from different backgrounds, with readers needing just a rudimentary understanding of analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms, and this second edition is accompanied by numerical examples throughout. It will provide readers with the appropriate background needed for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems. Key features: Provides an accessible introduction to the topic while keeping mathematics to a minimum Interdisciplinary topic with growing relevance and wide-ranging applications Accompanied by numerical examples throughout
Publisher: CRC Press
ISBN: 1000516350
Category : Science
Languages : en
Pages : 358
Book Description
Fully updated throughout and with several new chapters, this second edition of Introduction to Inverse Problems in Imaging guides advanced undergraduate and graduate students in physics, computer science, mathematics and engineering through the principles of linear inverse problems, in addition to methods of their approximate solution and their practical applications in imaging. This second edition contains new chapters on edge-preserving and sparsity-enforcing regularization in addition to maximum likelihood methods and Bayesian regularization for Poisson data. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of students from different backgrounds, with readers needing just a rudimentary understanding of analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms, and this second edition is accompanied by numerical examples throughout. It will provide readers with the appropriate background needed for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems. Key features: Provides an accessible introduction to the topic while keeping mathematics to a minimum Interdisciplinary topic with growing relevance and wide-ranging applications Accompanied by numerical examples throughout
Discrete Inverse and State Estimation Problems
Author: Carl Wunsch
Publisher: Cambridge University Press
ISBN: 1139456938
Category : Science
Languages : en
Pages : 357
Book Description
Addressing the problems of making inferences from noisy observations and imperfect theories, this 2006 book introduces many inference tools and practical applications. Starting with fundamental algebraic and statistical ideas, it is ideal for graduate students and researchers in oceanography, climate science, and geophysical fluid dynamics.
Publisher: Cambridge University Press
ISBN: 1139456938
Category : Science
Languages : en
Pages : 357
Book Description
Addressing the problems of making inferences from noisy observations and imperfect theories, this 2006 book introduces many inference tools and practical applications. Starting with fundamental algebraic and statistical ideas, it is ideal for graduate students and researchers in oceanography, climate science, and geophysical fluid dynamics.
Time Series Analysis and Inverse Theory for Geophysicists
Author: David Gubbins
Publisher: Cambridge University Press
ISBN: 1316582930
Category : Science
Languages : en
Pages : 274
Book Description
This unique textbook provides the foundation for understanding and applying techniques commonly used in geophysics to process and interpret modern digital data. The geophysicist's toolkit contains a range of techniques which may be divided into two main groups: processing, which concerns time series analysis and is used to separate the signal of interest from background noise; and inversion, which involves generating some map or physical model from the data. These two groups of techniques are normally taught separately, but are here presented together as parts I and II of the book. Part III describes some real applications and includes case studies in seismology, geomagnetism, and gravity. This textbook gives students and practitioners the theoretical background and practical experience, through case studies, computer examples and exercises, to understand and apply new processing methods to modern geophysical datasets. Solutions to the exercises are available on a website at http://publishing.cambridge.org/resources/0521819652
Publisher: Cambridge University Press
ISBN: 1316582930
Category : Science
Languages : en
Pages : 274
Book Description
This unique textbook provides the foundation for understanding and applying techniques commonly used in geophysics to process and interpret modern digital data. The geophysicist's toolkit contains a range of techniques which may be divided into two main groups: processing, which concerns time series analysis and is used to separate the signal of interest from background noise; and inversion, which involves generating some map or physical model from the data. These two groups of techniques are normally taught separately, but are here presented together as parts I and II of the book. Part III describes some real applications and includes case studies in seismology, geomagnetism, and gravity. This textbook gives students and practitioners the theoretical background and practical experience, through case studies, computer examples and exercises, to understand and apply new processing methods to modern geophysical datasets. Solutions to the exercises are available on a website at http://publishing.cambridge.org/resources/0521819652
Elementary Topology
Author: O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov
Publisher: American Mathematical Soc.
ISBN: 9780821886250
Category : Mathematics
Languages : en
Pages : 432
Book Description
This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.
Publisher: American Mathematical Soc.
ISBN: 9780821886250
Category : Mathematics
Languages : en
Pages : 432
Book Description
This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.
Geomathematics
Author: Volker Michel
Publisher: Cambridge University Press
ISBN: 1108317960
Category : Science
Languages : en
Pages : 467
Book Description
Geomathematics provides a comprehensive summary of the mathematical principles behind key topics in geophysics and geodesy, covering the foundations of gravimetry, geomagnetics and seismology. Theorems and their proofs explain why physical realities in geoscience are the logical mathematical consequences of basic laws. The book also derives and analyzes the theory and numerical aspects of established systems of basis functions; and presents an algorithm for combining different types of trial functions. Topics cover inverse problems and their regularization, the Laplace/Poisson equation, boundary-value problems, foundations of potential theory, the Poisson integral formula, spherical harmonics, Legendre polynomials and functions, radial basis functions, the Biot-Savart law, decomposition theorems (orthogonal, Helmholtz, and Mie), basics of continuum mechanics, conservation laws, modelling of seismic waves, the Cauchy-Navier equation, seismic rays, and travel-time tomography. Each chapter ends with review questions, with solutions for instructors available online, providing a valuable reference for graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 1108317960
Category : Science
Languages : en
Pages : 467
Book Description
Geomathematics provides a comprehensive summary of the mathematical principles behind key topics in geophysics and geodesy, covering the foundations of gravimetry, geomagnetics and seismology. Theorems and their proofs explain why physical realities in geoscience are the logical mathematical consequences of basic laws. The book also derives and analyzes the theory and numerical aspects of established systems of basis functions; and presents an algorithm for combining different types of trial functions. Topics cover inverse problems and their regularization, the Laplace/Poisson equation, boundary-value problems, foundations of potential theory, the Poisson integral formula, spherical harmonics, Legendre polynomials and functions, radial basis functions, the Biot-Savart law, decomposition theorems (orthogonal, Helmholtz, and Mie), basics of continuum mechanics, conservation laws, modelling of seismic waves, the Cauchy-Navier equation, seismic rays, and travel-time tomography. Each chapter ends with review questions, with solutions for instructors available online, providing a valuable reference for graduate students and researchers.
Introductory Functional Analysis with Applications
Author: Erwin Kreyszig
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392
Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392
Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
A Companion to Analysis
Author: Thomas William Körner
Publisher: American Mathematical Soc.
ISBN: 0821834479
Category : Mathematics
Languages : en
Pages : 608
Book Description
This book not only provides a lot of solid information about real analysis, it also answers those questions which students want to ask but cannot figure how to formulate. To read this book is to spend time with one of the modern masters in the subject. --Steven G. Krantz, Washington University, St. Louis One of the major assets of the book is Korner's very personal writing style. By keeping his own engagement with the material continually in view, he invites the reader to a similarly high level of involvement. And the witty and erudite asides that are sprinkled throughout the book are a real pleasure. --Gerald Folland, University of Washingtion, Seattle Many students acquire knowledge of a large number of theorems and methods of calculus without being able to say how they hang together. This book provides such students with the coherent account that they need. A Companion to Analysis explains the problems which must be resolved in order to obtain a rigorous development of the calculus and shows the student how those problems are dealt with. Starting with the real line, it moves on to finite dimensional spaces and then to metric spaces. Readers who work through this text will be ready for such courses as measure theory, functional analysis, complex analysis and differential geometry. Moreover, they will be well on the road which leads from mathematics student to mathematician. Able and hard working students can use this book for independent study, or it can be used as the basis for an advanced undergraduate or elementary graduate course. An appendix contains a large number of accessible but non-routine problems to improve knowledge and technique.
Publisher: American Mathematical Soc.
ISBN: 0821834479
Category : Mathematics
Languages : en
Pages : 608
Book Description
This book not only provides a lot of solid information about real analysis, it also answers those questions which students want to ask but cannot figure how to formulate. To read this book is to spend time with one of the modern masters in the subject. --Steven G. Krantz, Washington University, St. Louis One of the major assets of the book is Korner's very personal writing style. By keeping his own engagement with the material continually in view, he invites the reader to a similarly high level of involvement. And the witty and erudite asides that are sprinkled throughout the book are a real pleasure. --Gerald Folland, University of Washingtion, Seattle Many students acquire knowledge of a large number of theorems and methods of calculus without being able to say how they hang together. This book provides such students with the coherent account that they need. A Companion to Analysis explains the problems which must be resolved in order to obtain a rigorous development of the calculus and shows the student how those problems are dealt with. Starting with the real line, it moves on to finite dimensional spaces and then to metric spaces. Readers who work through this text will be ready for such courses as measure theory, functional analysis, complex analysis and differential geometry. Moreover, they will be well on the road which leads from mathematics student to mathematician. Able and hard working students can use this book for independent study, or it can be used as the basis for an advanced undergraduate or elementary graduate course. An appendix contains a large number of accessible but non-routine problems to improve knowledge and technique.
Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems
Author: Mourad Bellassoued
Publisher: Springer
ISBN: 4431566007
Category : Mathematics
Languages : en
Pages : 267
Book Description
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.
Publisher: Springer
ISBN: 4431566007
Category : Mathematics
Languages : en
Pages : 267
Book Description
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.