Author: Ram Swaroop
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 34
Book Description
A statistical technique and the necessary computer program for editing multivariate data are presented. The technique is particularly useful when large quantities of data are collected and the editing must be performed by automatic means. One task in the editing process is the identification of outliers, or observations which deviate markedly from the rest of the sample. A statistical technique, and the related computer program, for identifying the outliers in univariate data was presented in NASA TN D-5275. The current report is a multivariate analog which considers the statistical linear relationship between the variables in identifying the outliers. The program requires as inputs the number of variables, the data set, and the level of significance at which outliers are to be identified. It is assumed that the data are from a multivariate normal population and the sample size is at least two greater than the number of variables. Although the technique has been used primarily in editing biodata, the method is applicable to any multivariate data encountered in engineering and the physical sciences. An example is presented to illustrate the technique.
A Statistical Technique for Computer Identification of Outliers in Multivariate Data
Author: Ram Swaroop
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 34
Book Description
A statistical technique and the necessary computer program for editing multivariate data are presented. The technique is particularly useful when large quantities of data are collected and the editing must be performed by automatic means. One task in the editing process is the identification of outliers, or observations which deviate markedly from the rest of the sample. A statistical technique, and the related computer program, for identifying the outliers in univariate data was presented in NASA TN D-5275. The current report is a multivariate analog which considers the statistical linear relationship between the variables in identifying the outliers. The program requires as inputs the number of variables, the data set, and the level of significance at which outliers are to be identified. It is assumed that the data are from a multivariate normal population and the sample size is at least two greater than the number of variables. Although the technique has been used primarily in editing biodata, the method is applicable to any multivariate data encountered in engineering and the physical sciences. An example is presented to illustrate the technique.
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 34
Book Description
A statistical technique and the necessary computer program for editing multivariate data are presented. The technique is particularly useful when large quantities of data are collected and the editing must be performed by automatic means. One task in the editing process is the identification of outliers, or observations which deviate markedly from the rest of the sample. A statistical technique, and the related computer program, for identifying the outliers in univariate data was presented in NASA TN D-5275. The current report is a multivariate analog which considers the statistical linear relationship between the variables in identifying the outliers. The program requires as inputs the number of variables, the data set, and the level of significance at which outliers are to be identified. It is assumed that the data are from a multivariate normal population and the sample size is at least two greater than the number of variables. Although the technique has been used primarily in editing biodata, the method is applicable to any multivariate data encountered in engineering and the physical sciences. An example is presented to illustrate the technique.
NASA Technical Note
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 500
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 500
Book Description
Applied Compositional Data Analysis
Author: Peter Filzmoser
Publisher: Springer
ISBN: 3319964224
Category : Mathematics
Languages : en
Pages : 288
Book Description
This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and regression. In addition, it considers special data structures like high-dimensional compositions and compositional tables. The methodology introduced is also frequently compared to methods which ignore the specific nature of compositional data. It focuses on practical aspects of compositional data analysis rather than on detailed theoretical derivations, thus issues like graphical visualization and preprocessing (treatment of missing values, zeros, outliers and similar artifacts) form an important part of the book. Since it is primarily intended for researchers and students from applied fields like geochemistry, chemometrics, biology and natural sciences, economics, and social sciences, all the proposed methods are accompanied by worked-out examples in R using the package robCompositions.
Publisher: Springer
ISBN: 3319964224
Category : Mathematics
Languages : en
Pages : 288
Book Description
This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and regression. In addition, it considers special data structures like high-dimensional compositions and compositional tables. The methodology introduced is also frequently compared to methods which ignore the specific nature of compositional data. It focuses on practical aspects of compositional data analysis rather than on detailed theoretical derivations, thus issues like graphical visualization and preprocessing (treatment of missing values, zeros, outliers and similar artifacts) form an important part of the book. Since it is primarily intended for researchers and students from applied fields like geochemistry, chemometrics, biology and natural sciences, economics, and social sciences, all the proposed methods are accompanied by worked-out examples in R using the package robCompositions.
Outlier Analysis
Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319475789
Category : Computers
Languages : en
Pages : 481
Book Description
This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.
Publisher: Springer
ISBN: 3319475789
Category : Computers
Languages : en
Pages : 481
Book Description
This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.
Modern Multivariate Statistical Techniques
Author: Alan J. Izenman
Publisher: Springer Science & Business Media
ISBN: 0387781897
Category : Mathematics
Languages : en
Pages : 757
Book Description
This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.
Publisher: Springer Science & Business Media
ISBN: 0387781897
Category : Mathematics
Languages : en
Pages : 757
Book Description
This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.
Applied Multivariate Statistical Analysis
Author: Wolfgang Karl Härdle
Publisher: Springer Nature
ISBN: 3031638336
Category :
Languages : en
Pages : 611
Book Description
Publisher: Springer Nature
ISBN: 3031638336
Category :
Languages : en
Pages : 611
Book Description
Social Sensing
Author: Dong Wang
Publisher: Morgan Kaufmann
ISBN: 0128011319
Category : Computers
Languages : en
Pages : 232
Book Description
Increasingly, human beings are sensors engaging directly with the mobile Internet. Individuals can now share real-time experiences at an unprecedented scale. Social Sensing: Building Reliable Systems on Unreliable Data looks at recent advances in the emerging field of social sensing, emphasizing the key problem faced by application designers: how to extract reliable information from data collected from largely unknown and possibly unreliable sources. The book explains how a myriad of societal applications can be derived from this massive amount of data collected and shared by average individuals. The title offers theoretical foundations to support emerging data-driven cyber-physical applications and touches on key issues such as privacy. The authors present solutions based on recent research and novel ideas that leverage techniques from cyber-physical systems, sensor networks, machine learning, data mining, and information fusion. Offers a unique interdisciplinary perspective bridging social networks, big data, cyber-physical systems, and reliability Presents novel theoretical foundations for assured social sensing and modeling humans as sensors Includes case studies and application examples based on real data sets Supplemental material includes sample datasets and fact-finding software that implements the main algorithms described in the book
Publisher: Morgan Kaufmann
ISBN: 0128011319
Category : Computers
Languages : en
Pages : 232
Book Description
Increasingly, human beings are sensors engaging directly with the mobile Internet. Individuals can now share real-time experiences at an unprecedented scale. Social Sensing: Building Reliable Systems on Unreliable Data looks at recent advances in the emerging field of social sensing, emphasizing the key problem faced by application designers: how to extract reliable information from data collected from largely unknown and possibly unreliable sources. The book explains how a myriad of societal applications can be derived from this massive amount of data collected and shared by average individuals. The title offers theoretical foundations to support emerging data-driven cyber-physical applications and touches on key issues such as privacy. The authors present solutions based on recent research and novel ideas that leverage techniques from cyber-physical systems, sensor networks, machine learning, data mining, and information fusion. Offers a unique interdisciplinary perspective bridging social networks, big data, cyber-physical systems, and reliability Presents novel theoretical foundations for assured social sensing and modeling humans as sensors Includes case studies and application examples based on real data sets Supplemental material includes sample datasets and fact-finding software that implements the main algorithms described in the book
Computer Program Abstracts
Author:
Publisher:
ISBN:
Category : Computer programs
Languages : en
Pages : 32
Book Description
Publisher:
ISBN:
Category : Computer programs
Languages : en
Pages : 32
Book Description
Volume 16: How to Detect and Handle Outliers
Author: Boris Iglewicz
Publisher: Quality Press
ISBN: 0873892607
Category : Business & Economics
Languages : en
Pages : 99
Book Description
Outliers are the key focus of this book. The authors concentrate on the practical aspects of dealing with outliers in the forms of data that arise most often in applications: single and multiple samples, linear regression, and factorial experiments. Available only as an E-Book.
Publisher: Quality Press
ISBN: 0873892607
Category : Business & Economics
Languages : en
Pages : 99
Book Description
Outliers are the key focus of this book. The authors concentrate on the practical aspects of dealing with outliers in the forms of data that arise most often in applications: single and multiple samples, linear regression, and factorial experiments. Available only as an E-Book.
COSMIC Software Catalog
Author:
Publisher:
ISBN:
Category : Computer software
Languages : en
Pages : 444
Book Description
Publisher:
ISBN:
Category : Computer software
Languages : en
Pages : 444
Book Description