A Simplified Approach to the Classical Laminate Theory of Composite Materials

A Simplified Approach to the Classical Laminate Theory of Composite Materials PDF Author: Andreas Öchsner
Publisher: Springer Nature
ISBN: 3031381920
Category : Science
Languages : en
Pages : 132

Get Book Here

Book Description
This book provides a systematic introduction to composite materials, which are obtained by a layer-wise stacking of one-dimensional bar/beam elements. Each layer may have different mechanical properties but each single layer is considered as isotropic. The major idea is to provide a simplified theory to easier understand the classical two-dimensional laminate theory for composites based on laminae with unidirectional fibers. In addition to the elastic behavior, failure is investigated based on the maximum stress, maximum strain, Tsai-Hill, and the Tsai-Wu criteria. Partial differential equations lay the foundation to mathematically describe the mechanical behavior of any classical structural member known in engineering mechanics, including composite materials. The so-called classical laminate theory provides a simplified stress analysis, and a subsequent failure analysis, without the solution of the system of coupled differential equations for the unknown displacements. The procedure provides the solution of a statically indeterminate system based on a generalized stress–strain relationship under consideration of the constitutive relationship and the definition of the so-called stress resultants. This laminate theory is typically provided for two-dimensional plane problems, where the basic structural element is a simple superposition of a classical plane elasticity element with a thin plate element under the consideration of an orthotropic constitutive law. This two-dimensional approach and the underlying advanced continuum mechanical modeling might be very challenging for some students, particularly at universities of applied sciences. Thus, a reduced approach, the so-called simplified classical laminate theory, has been developed. The idea is to use solely isotropic one-dimensional elements, i.e., a superposition of bar and beam elements, to introduce the major calculation steps of the classical laminate theory. Understanding this simplified theory is much easier and the final step it to highlight the differences when moving to the general two-dimensional case.

A Simplified Approach to the Classical Laminate Theory of Composite Materials

A Simplified Approach to the Classical Laminate Theory of Composite Materials PDF Author: Andreas Öchsner
Publisher: Springer Nature
ISBN: 3031381920
Category : Science
Languages : en
Pages : 132

Get Book Here

Book Description
This book provides a systematic introduction to composite materials, which are obtained by a layer-wise stacking of one-dimensional bar/beam elements. Each layer may have different mechanical properties but each single layer is considered as isotropic. The major idea is to provide a simplified theory to easier understand the classical two-dimensional laminate theory for composites based on laminae with unidirectional fibers. In addition to the elastic behavior, failure is investigated based on the maximum stress, maximum strain, Tsai-Hill, and the Tsai-Wu criteria. Partial differential equations lay the foundation to mathematically describe the mechanical behavior of any classical structural member known in engineering mechanics, including composite materials. The so-called classical laminate theory provides a simplified stress analysis, and a subsequent failure analysis, without the solution of the system of coupled differential equations for the unknown displacements. The procedure provides the solution of a statically indeterminate system based on a generalized stress–strain relationship under consideration of the constitutive relationship and the definition of the so-called stress resultants. This laminate theory is typically provided for two-dimensional plane problems, where the basic structural element is a simple superposition of a classical plane elasticity element with a thin plate element under the consideration of an orthotropic constitutive law. This two-dimensional approach and the underlying advanced continuum mechanical modeling might be very challenging for some students, particularly at universities of applied sciences. Thus, a reduced approach, the so-called simplified classical laminate theory, has been developed. The idea is to use solely isotropic one-dimensional elements, i.e., a superposition of bar and beam elements, to introduce the major calculation steps of the classical laminate theory. Understanding this simplified theory is much easier and the final step it to highlight the differences when moving to the general two-dimensional case.

A Numerical Approach to the Classical Laminate Theory of Composite Materials

A Numerical Approach to the Classical Laminate Theory of Composite Materials PDF Author: Andreas Öchsner
Publisher: Springer Nature
ISBN: 3031329759
Category : Technology & Engineering
Languages : en
Pages : 181

Get Book Here

Book Description
This book first provides a systematic and thorough introduction to the classical laminate theory for composite materials based on the theory for plane elasticity elements and classical (shear-rigid) plate elements. The focus is on unidirectional lamina which can be described based on orthotropic constitutive equations and their composition to layered laminates. In addition to the elastic behavior, failure is investigated based on the maximum stress, maximum strain, Tsai-Hill, and the Tsai-Wu criteria. The solution of the fundamental equations of the classical laminate theory is connected with extensive matrix operations, and many problems require in addition iteration loops. Thus, a classical hand calculation of related problems is extremely time consuming. In order to facilitate the application of the classical laminate theory, we decided to provide a Python-based computational tool, the so-called Composite Laminate Analysis Tool (CLAT) to easily solve some standard questions from the context of fiber-reinforced composites. The tool runs in any standard web browser and offers a user-friendly interface with many post-processing options. The functionality comprises stress and strain analysis of lamina and laminates, derivation of off-axis elastic properties of lamina, and the failure analysis based on different criteria.

A Numerical Approach to the Micromechanics of Fibre-Reinforced Laminae

A Numerical Approach to the Micromechanics of Fibre-Reinforced Laminae PDF Author: Andreas Öchsner
Publisher: Springer Nature
ISBN: 303167488X
Category :
Languages : en
Pages : 105

Get Book Here

Book Description


Composite Mechanics

Composite Mechanics PDF Author: Andreas Öchsner
Publisher: Springer Nature
ISBN: 3031323904
Category : Science
Languages : en
Pages : 214

Get Book Here

Book Description
This book in the advanced structured materials series provides first an introduction to the mircomechanics of fiber-reinforced laminae, which deals with the prediction of the macroscopic mechanical lamina properties based on the mechanical properties of the constituents, i.e., fibers and matrix. Composite materials, especially fiber-reinforced composites, are gaining increasing importance since they can overcome the limits of many structures based on classical metals. Particularly, the combination of a matrix with fibers provides far better properties than the constituents alone. Despite their importance, many engineering degree programs do not treat the mechanical behavior of this class of advanced structured materials in detail, at least on the bachelor’s degree level. Thus, some engineers are not able to thoroughly apply and introduce these modern engineering materials in their design process. The second part of this book provides a systematic and thorough introduction to the classical laminate theory based on the theory for plane elasticity elements and classical (shear-rigid) plate elements. The focus is on unidirectional lamina which can be described based on orthotropic constitutive equations and their composition to layered laminates. In addition to the elastic behavior, failure is investigated based on the maximum stress, maximum strain, Tsai-Hill, and the Tsai-Wu criteria. The introduced classical laminate theory provides a simplified stress analysis, and a subsequent failure analysis, without the solution of the system of coupled differential equations for the unknown displacements in the three coordinate directions. The book concludes with a short introduction to a calculation program, the so-called Composite Laminate Analysis Tool (CLAT), which allows the application of the classical laminate based on a sophisticated Python script.

Stress Analysis of Fiber-reinforced Composite Materials

Stress Analysis of Fiber-reinforced Composite Materials PDF Author: M. W. Hyer
Publisher: DEStech Publications, Inc
ISBN: 193207886X
Category : Technology & Engineering
Languages : en
Pages : 718

Get Book Here

Book Description
Updated and improved, Stress Analysis of Fiber-Reinforced Composite Materials, Hyer's work remains the definitive introduction to the use of mechanics to understand stresses in composites caused by deformations, loading, and temperature changes. In contrast to a materials science approach, Hyer emphasizes the micromechanics of stress and deformation for composite material analysis. The book provides invaluable analytic tools for students and engineers seeking to understand composite properties and failure limits. A key feature is a series of analytic problems continuing throughout the text, starting from relatively simple problems, which are built up step-by-step with accompanying calculations. The problem series uses the same material properties, so the impact of the elastic and thermal expansion properties for a single-layer of FR material on the stress, strains, elastic properties, thermal expansion and failure stress of cross-ply and angle-ply symmetric and unsymmetric laminates can be evaluated. The book shows how thermally induced stresses and strains due to curing, add to or subtract from those due to applied loads.Another important element, and one unique to this book, is an emphasis on the difference between specifying the applied loads, i.e., force and moment results, often the case in practice, versus specifying strains and curvatures and determining the subsequent stresses and force and moment results. This represents a fundamental distinction in solid mechanics.

Mechanical Identification of Composites

Mechanical Identification of Composites PDF Author: A. Vautrin
Publisher: Springer Science & Business Media
ISBN: 9401136580
Category : Technology & Engineering
Languages : en
Pages : 458

Get Book Here

Book Description


Residual Stresses in Composite Materials

Residual Stresses in Composite Materials PDF Author: Mahmood M. Shokrieh
Publisher: Woodhead Publishing
ISBN: 0857098594
Category : Technology & Engineering
Languages : en
Pages : 407

Get Book Here

Book Description
Residual stresses are a common phenomenon in composite materials. They can either add to or significantly reduce material strength. Because of the increasing demand for high-strength, light-weight materials such as composites and their wide range of applications in the aerospace and automotive industries, in civil infrastructure and in sporting applications, it is critical that the residual stresses of composite materials are understood and measured correctly.The first part of this important book reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses. Various mathematical (analytical and numerical) methods for calculation of residual stresses in composite materials are also presented. Chapters in the first section of the book discuss the simulated hole drilling method, the slitting/crack compliance method, measuring residual stresses in homogeneous and composite glass materials using photoelastic techniques, and modeling residual stresses in composite materials. The second part of the book discusses residual stresses in polymer matrix, metal-matrix and a range of other types of composites. Moreover, the addition of nanoparticles to the matrix of polymeric composites as a new technique for reduction of residual stresses is discussed.Residual stresses in composite materials provides a comprehensive overview of this important topic, and is an invaluable reference text for both academics and professionals working in the mechanical engineering, civil engineering, aerospace, automotive, marine and sporting industries. - Reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses - Discusses residual stresses in polymer matrix, metal-matrix and other types of composite - Considers the addition of nanoparticles to the matrix of polymeric composites as a new technique for reduction of residual stresses

Flow-Induced Alignment in Composite Materials

Flow-Induced Alignment in Composite Materials PDF Author: T. D. Papathanasiou
Publisher: Woodhead Publishing
ISBN: 9781855732544
Category : Computers
Languages : en
Pages : 384

Get Book Here

Book Description
The purpose of aligning short fibers in a fiber-reinforced material is to improve the mechanical properties of the resulting composite. Aligning the fibers, generally in a preferred direction, allows them to contribute as much as possible to reinforcing the material. In some cases, the mechanical properties of these aligned, short-fiber composites can approach those of continuous-fiber composites, with the advantages of lower production costs and greater ease of production. Since its publication, this book has been consistently recognized as one of the most important contributions to this field.

Mechanics of Composite Materials

Mechanics of Composite Materials PDF Author: J.N. Reddy
Publisher: Springer Science & Business Media
ISBN: 9401722331
Category : Science
Languages : en
Pages : 460

Get Book Here

Book Description
Everyone involved with the mechanics of composite materials and structures must have come across the works of Dr. N.J. Pagano in their research. His research papers are among the most referenced of all existing literature in the field of mechanics of composite materials. This monograph makes available, in one volume, all Dr. Pagano's major technical papers. Most of the papers included in this volume have been published in the open literature, but there are a few exceptions -- a few key, unpublished reports have been included for continuity. The topics are: some basic studies of anisotropic behavior, exact solutions for elastic response, role of micromechanics, and some carbon--carbon spinoffs. The volume can be used as a reference book by researchers in academia, industry, and government laboratories, and it can be used as a reference text for a graduate course on the mechanics of composite materials.

Woven Fabric Composites

Woven Fabric Composites PDF Author: Niranjan K. Naik
Publisher: CRC Press
ISBN: 9780877629900
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book Here

Book Description
This work is presented as an analytical methodology developed to study the thermo-elastic behavior of woven fabric composites. Also, experimental studies on the failure behavior of woven fabric composites are presented.