A Rotor Flux Linkage Estimator and Operating Envelopes of a Variable-Flux IPM Synchronous Machine

A Rotor Flux Linkage Estimator and Operating Envelopes of a Variable-Flux IPM Synchronous Machine PDF Author: Akrem Mohamed Aljehaimi
Publisher:
ISBN:
Category :
Languages : en
Pages : 125

Get Book Here

Book Description
Interior permanent magnet synchronous machines (IPMSMs) with rare-earth magnets are widely used by the electric and hybrid electric vehicle industry due to their high efficiency and high torque density. The drawbacks of the IPMSMs like the fluctuating prices of the rare-earth permanent magnets (PMs), the difficulty in flux weakening, and relatively low efficiency in the high-speed region, triggered the need for alternative electrical machines for traction applications. The variable-flux type IPMSMs, also called memory motors, is a promising technology for electrified transportation applications. These machines make use of low-coercivity magnets such as AlNiCo magnets, which makes them rare-earth PM independent. Moreover, owing to the low-coercivity, the AlNiCo magnets can be demagnetized in the high-speed region. This reduces or eliminates the extra current component needed for flux weakening, which results in lower copper/iron losses and improved machine efficiency. Besides, the variable-flux IPMSMs can provide torque densities comparable to rare-earth IPMSMs in high-torque low-speed regions. Since the magnetization state of AlNiCo magnets can be varied online by a short stator current pulse, and the current needed for a particular magnetization state is machine parameter dependent, it is of a vital importance to the drive system to keep track of the magnet flux during transient and steady-state conditions. Moreover, failing in depicting the actual magnetization state of the magnets means a mismatch between the real value of the magnet flux in the machine and the estimated one in the controller, which directly affects the resultant torque and performance. In addition, the current pulse excitation method for magnetization causes non-uniform variable flux distribution in the air-gap. Therefore, an estimation algorithm of the rotor flux linkage of variable-flux IPMSMs via flux harmonics extraction has been proposed. Compared to the existing methods, this method does not need any voltage or current signal injection into the stator winding. The algorithm was experimentally evaluated for different magnetization states and showed a good performance in tracking the rotor flux linkage variations during transient and steady-state conditions. The operating envelopes of the variable-flux IPMSM were found to be affected by the nonlinearity of the magnet flux with the machine direct axis current. New analytical solutions for the operating point were reached for maximum power and maximum output voltage control for the variable-flux IPMSM taking into consideration this nonlinearity. The experimental measurement performed also support the analytical results. The irreversible demagnetization of the low-coercivity magnets in the high-speed region results in extending the braking time of the variable-flux IPMSMs. A simple yet effective minimal-time braking algorithm is proposed and experimentally validated.

A Rotor Flux Linkage Estimator and Operating Envelopes of a Variable-Flux IPM Synchronous Machine

A Rotor Flux Linkage Estimator and Operating Envelopes of a Variable-Flux IPM Synchronous Machine PDF Author: Akrem Mohamed Aljehaimi
Publisher:
ISBN:
Category :
Languages : en
Pages : 125

Get Book Here

Book Description
Interior permanent magnet synchronous machines (IPMSMs) with rare-earth magnets are widely used by the electric and hybrid electric vehicle industry due to their high efficiency and high torque density. The drawbacks of the IPMSMs like the fluctuating prices of the rare-earth permanent magnets (PMs), the difficulty in flux weakening, and relatively low efficiency in the high-speed region, triggered the need for alternative electrical machines for traction applications. The variable-flux type IPMSMs, also called memory motors, is a promising technology for electrified transportation applications. These machines make use of low-coercivity magnets such as AlNiCo magnets, which makes them rare-earth PM independent. Moreover, owing to the low-coercivity, the AlNiCo magnets can be demagnetized in the high-speed region. This reduces or eliminates the extra current component needed for flux weakening, which results in lower copper/iron losses and improved machine efficiency. Besides, the variable-flux IPMSMs can provide torque densities comparable to rare-earth IPMSMs in high-torque low-speed regions. Since the magnetization state of AlNiCo magnets can be varied online by a short stator current pulse, and the current needed for a particular magnetization state is machine parameter dependent, it is of a vital importance to the drive system to keep track of the magnet flux during transient and steady-state conditions. Moreover, failing in depicting the actual magnetization state of the magnets means a mismatch between the real value of the magnet flux in the machine and the estimated one in the controller, which directly affects the resultant torque and performance. In addition, the current pulse excitation method for magnetization causes non-uniform variable flux distribution in the air-gap. Therefore, an estimation algorithm of the rotor flux linkage of variable-flux IPMSMs via flux harmonics extraction has been proposed. Compared to the existing methods, this method does not need any voltage or current signal injection into the stator winding. The algorithm was experimentally evaluated for different magnetization states and showed a good performance in tracking the rotor flux linkage variations during transient and steady-state conditions. The operating envelopes of the variable-flux IPMSM were found to be affected by the nonlinearity of the magnet flux with the machine direct axis current. New analytical solutions for the operating point were reached for maximum power and maximum output voltage control for the variable-flux IPMSM taking into consideration this nonlinearity. The experimental measurement performed also support the analytical results. The irreversible demagnetization of the low-coercivity magnets in the high-speed region results in extending the braking time of the variable-flux IPMSMs. A simple yet effective minimal-time braking algorithm is proposed and experimentally validated.

Electric Vehicle Machines and Drives

Electric Vehicle Machines and Drives PDF Author: K. T. Chau
Publisher: John Wiley & Sons
ISBN: 1118752600
Category : Technology & Engineering
Languages : en
Pages : 375

Get Book Here

Book Description
A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material

Small-signal stability, control and dynamic performance of power systems

Small-signal stability, control and dynamic performance of power systems PDF Author: M.J Gibbard
Publisher: University of Adelaide Press
ISBN: 1925261034
Category : Technology & Engineering
Languages : en
Pages : 686

Get Book Here

Book Description
A thorough and exhaustive presentation of theoretical analysis and practical techniques for the small-signal analysis and control of large modern electric power systems as well as an assessment of their stability and damping performance.

Recent Developments of Electrical Drives

Recent Developments of Electrical Drives PDF Author: Slawomir Wiak
Publisher: Springer Science & Business Media
ISBN: 1402045352
Category : Technology & Engineering
Languages : en
Pages : 459

Get Book Here

Book Description
This book presents papers covering a wide spectrum of theory and practice, deeply rooted in engineering problems at a high practical and theoretical level. The contents explore theory, control systems and applications, the heart of the matter in electrical drives.

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives PDF Author: Marius Rosu
Publisher: John Wiley & Sons
ISBN: 1119103444
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.

Sensorless Vector and Direct Torque Control

Sensorless Vector and Direct Torque Control PDF Author: Peter Vas
Publisher: Oxford, [Eng.] ; New York : Oxford University Press
ISBN:
Category : Mathematics
Languages : en
Pages : 804

Get Book Here

Book Description
This is the first comprehensive book on sensorless high performance a.c. drives. It is essential reading for anyone interestred in acquiring a solid background on sensorless torque-controlled drives. It presents a detailed and unified treatment of sensorless vector-controlled and direct-torque controlled drive systems. It also discusses the applications of artificial intelligence to drives. Where possible, space vector theory is used and emphasis is laid on detailed mathematical and physical analysis. Sensorless drive schemes for different types of permanent magnet synchronous motors, synchronous reluctance motors, and induction motors are also presented. These include more than twenty vector drives e.g. five types of MRAS-based vector drives, and eleven types of direct-torque-controlled (DTC) drives, e.g. the ABB DTC drive. However, torque-controlled switched reluctance motor drives are also discussed due to their emerging importance. The book also covers various drive applications using artificial intelligence (fuzzy logic, neural networks, fuzzy-neural networks) and AI-based modelling of electrical machines. Finally, self-commissioning techniques are also discussed. This is a comprehensive thoroughly up-to-date, and self-contained book suitable for students at various levels, teachers, and industrial readership. Peter Vas is a Professor at the Department of Engineering at the University of Aberdeen, UK, where he is also the Head of the Intelligent Motion Control Group. His previous books published by Oxford University Press are extensively used worldwide.

Design of Brushless Permanent-magnet Motors

Design of Brushless Permanent-magnet Motors PDF Author: J. R. Hendershot
Publisher: Clarendon Press
ISBN: 9780198593898
Category : Electric motors, Brushless
Languages : en
Pages : 0

Get Book Here

Book Description
Brushless permanent-magnet motors provide simple, low maintenance, and easily controlled mechanical power. Written by two leading experts on the subject, this book offers the most comprehensive guide to the design and performance of brushless permanent-magnetic motors ever written. Topics range from electrical and magnetic design to materials and control. Throughout, the authors stress both practical and theoretical aspects of the subject, and relate the material to modern software-based techniques for design and analysis. As new magnetic materials and digital power control techniques continue to widen the scope of the applicability of such motors, the need for an authoritative overview of the subject becomes ever more urgent. Design of Brushless Permanent-Magnet Motors fits the bill and will be read by students and researchers in electric and electronic engineering.

Vector Control of Three-Phase AC Machines

Vector Control of Three-Phase AC Machines PDF Author: Nguyen Phung Quang
Publisher: Springer
ISBN: 3662469154
Category : Technology & Engineering
Languages : en
Pages : 374

Get Book Here

Book Description
This book addresses the vector control of three-phase AC machines, in particular induction motors with squirrel-cage rotors (IM), permanent magnet synchronous motors (PMSM) and doubly-fed induction machines (DFIM), from a practical design and development perspective. The main focus is on the application of IM and PMSM in electrical drive systems, where field-orientated control has been successfully established in practice. It also discusses the use of grid-voltage oriented control of DFIMs in wind power plants. This second, enlarged edition includes new insights into flatness-based nonlinear control of IM, PMSM and DFIM. The book is useful for practitioners as well as development engineers and designers in the area of electrical drives and wind-power technology. It is a valuable resource for researchers and students.

Permanent Magnet Brushless DC Motor Drives and Controls

Permanent Magnet Brushless DC Motor Drives and Controls PDF Author: Chang-liang Xia
Publisher: John Wiley & Sons
ISBN: 1118188365
Category : Technology & Engineering
Languages : en
Pages : 306

Get Book Here

Book Description
An advanced introduction to the simulation and hardware implementation of BLDC motor drives A thorough reference on the simulation and hardware implementation of BLDC motor drives, this book covers recent advances in the control of BLDC motor drives, including intelligent control, sensorless control, torque ripple reduction and hardware implementation. With the guidance of the expert author team, readers will understand the principle, modelling, design and control of BLDC motor drives. The advanced control methods and new achievements of BLDC motor drives, of interest to more advanced readers, are also presented. Focuses on the control of PM brushless DC motors, giving readers the foundations to the topic that they can build on through more advanced reading Systematically guides readers through the subject, introducing basic operational principles before moving on to advanced control algorithms and implementations Covers special issues, such as sensorless control, intelligent control, torque ripple reduction and hardware implementation, which also have applications to other types of motors Includes presentation files with lecture notes and Matlab 7 coding on a companion website for the book

Electric and Magnetic Fields

Electric and Magnetic Fields PDF Author: R. Belmans
Publisher: Springer Science & Business Media
ISBN: 1461519616
Category : Technology & Engineering
Languages : en
Pages : 380

Get Book Here

Book Description
This book contains the edited versions of the papers presented at the Second International Workshop on Electric and Magnetic Fields held at the Katholieke Universiteit van Leuven (Belgium) in May 1994. This Workshop deals with numerical solutions of electromagnetic problems in real life applications. The topics include coupled problems (thermal, mechanical, electric circuits), CAD & CAM applications, 3D eddy current and high frequency problems, optimisation and application oriented numerical problems. This workshop was organised jointly by the AIM (Association of Engineers graduated from de Montefiore Electrical Institute) together with the Departments of Electrical Engineering of the Katholieke Universiteit van Leuven (Prof. R. Belmans), the University of Gent (Prof. J. Melkebbek) and the University of Liege (Prof. W. Legros). These laboratories are working together in the framework of the Pole d'Attraction Interuniversitaire - Inter-University Attractie-Pole 51 - on electromagnetic systems led by the University of Liege and the research work they perform covers most of the topics of the Workshop. One of the principal aims of this Workshop was to provide a bridge between the electromagnetic device designers, mainly industrialists, and the electromagnetic field computation developers. Therefore, this book contains a continuous spectrum of papers from application of electromagnetic models in industrial design to presentation of new theoretical developments.