A Kinetic and Biochemical Approach to Understanding the Mechanisms of Novel DNA Polymerases

A Kinetic and Biochemical Approach to Understanding the Mechanisms of Novel DNA Polymerases PDF Author: Kevin Andrew Fiala
Publisher:
ISBN:
Category : DNA damage
Languages : en
Pages :

Get Book Here

Book Description
Abstract: DNA polymerases are the enzymes responsible for the vital task of faithfully duplicating genomes in order to pass on these genetically encoded instructions to their offspring. However, the process of faithfully propagating this information is hindered in all organisms due to endogenous and exogenous agents that damage DNA. While DNA repair mechanisms correct the vast majority of the resulting DNA lesions, unrepaired lesions do persist in the presence of fully functional repair mechanisms. Fortunately cells have evolved a class of promiscuous enzymes known as lesion bypass polymerases that have been shown to bypass DNA lesions that stall the high fidelity replicative DNA polymerases. Here, we have studied two DNA polymerases, human DNA polymerase [lambda] and Sulfolobus solfataricus DNA polymerase IV (Dpo4), which are thought to be involved in the previously mentioned cellular processes of DNA repair and DNA lesion bypass respectively. In the process of establishing a minimal kinetic mechanism for the incorporation of a single nucleotide into undamaged DNA catalyzed by human DNA polymerase [lambda], we discovered a novel mechanism in which one of its non-enzymatic N-terminal domains, the Proline-rich domain, dramatically increases the fidelity of the C-terminal DNA polymerase [beta]-like domain by 10- to 100-fold to the level equivalent to that observed with DNA polymerase [beta], with which it shares 33% sequence identity. Moreover, we have also explored the effects of various structurally distinct DNA substrates on the catalytic efficiency of nucleotide incorporation where we determined the downstream strand and its 5'-phosphate increase the incorporation efficiency by 15- and 11-fold respectively. We have used S. solfataricus Dpo4 as a model Y-family DNA polymerase to elucidate the kinetic mechanism for nucleotide incorporation at both 37 °C and 56 °C, demonstrating that Dpo4 uses an induced-fit mechanism to select and incorporate a correct nucleotide into undamaged DNA independent of reaction temperature. We have also demonstrated using a variety of techniques that Dpo4 predominantly uses two distinct pathways (A-rule and lesion loop-out mechanism) to bypass an abasic site lesion. Taken together, these observations provide compelling evidence for the observation made by Joyce and Benkovic that DNA polymerases defy a unified description.

A Kinetic and Biochemical Approach to Understanding the Mechanisms of Novel DNA Polymerases

A Kinetic and Biochemical Approach to Understanding the Mechanisms of Novel DNA Polymerases PDF Author: Kevin Andrew Fiala
Publisher:
ISBN:
Category : DNA damage
Languages : en
Pages :

Get Book Here

Book Description
Abstract: DNA polymerases are the enzymes responsible for the vital task of faithfully duplicating genomes in order to pass on these genetically encoded instructions to their offspring. However, the process of faithfully propagating this information is hindered in all organisms due to endogenous and exogenous agents that damage DNA. While DNA repair mechanisms correct the vast majority of the resulting DNA lesions, unrepaired lesions do persist in the presence of fully functional repair mechanisms. Fortunately cells have evolved a class of promiscuous enzymes known as lesion bypass polymerases that have been shown to bypass DNA lesions that stall the high fidelity replicative DNA polymerases. Here, we have studied two DNA polymerases, human DNA polymerase [lambda] and Sulfolobus solfataricus DNA polymerase IV (Dpo4), which are thought to be involved in the previously mentioned cellular processes of DNA repair and DNA lesion bypass respectively. In the process of establishing a minimal kinetic mechanism for the incorporation of a single nucleotide into undamaged DNA catalyzed by human DNA polymerase [lambda], we discovered a novel mechanism in which one of its non-enzymatic N-terminal domains, the Proline-rich domain, dramatically increases the fidelity of the C-terminal DNA polymerase [beta]-like domain by 10- to 100-fold to the level equivalent to that observed with DNA polymerase [beta], with which it shares 33% sequence identity. Moreover, we have also explored the effects of various structurally distinct DNA substrates on the catalytic efficiency of nucleotide incorporation where we determined the downstream strand and its 5'-phosphate increase the incorporation efficiency by 15- and 11-fold respectively. We have used S. solfataricus Dpo4 as a model Y-family DNA polymerase to elucidate the kinetic mechanism for nucleotide incorporation at both 37 °C and 56 °C, demonstrating that Dpo4 uses an induced-fit mechanism to select and incorporate a correct nucleotide into undamaged DNA independent of reaction temperature. We have also demonstrated using a variety of techniques that Dpo4 predominantly uses two distinct pathways (A-rule and lesion loop-out mechanism) to bypass an abasic site lesion. Taken together, these observations provide compelling evidence for the observation made by Joyce and Benkovic that DNA polymerases defy a unified description.

Molecular Biology of the Cell

Molecular Biology of the Cell PDF Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0

Get Book Here

Book Description


Nucleic Acid Polymerases

Nucleic Acid Polymerases PDF Author: Katsuhiko S. Murakami
Publisher: Springer Science & Business Media
ISBN: 3642397964
Category : Science
Languages : en
Pages : 342

Get Book Here

Book Description
This book provides a review of the multitude of nucleic acid polymerases, including DNA and RNA polymerases from Archea, Bacteria and Eukaryota, mitochondrial and viral polymerases, and other specialized polymerases such as telomerase, template-independent terminal nucleotidyl transferase and RNA self-replication ribozyme. Although many books cover several different types of polymerases, no book so far has attempted to catalog all nucleic acid polymerases. The goal of this book is to be the top reference work for postgraduate students, postdocs, and principle investigators who study polymerases of all varieties. In other words, this book is for polymerase fans by polymerase fans. Nucleic acid polymerases play a fundamental role in genome replication, maintenance, gene expression and regulation. Throughout evolution these enzymes have been pivotal in transforming life towards RNA self-replicating systems as well as into more stable DNA genomes. These enzymes are generally extremely efficient and accurate in RNA transcription and DNA replication and share common kinetic and structural features. How catalysis can be so amazingly fast without loss of specificity is a question that has intrigued researchers for over 60 years. Certain specialized polymerases that play a critical role in cellular metabolism are used for diverse biotechnological applications and are therefore an essential tool for research.

Insect Molecular Biology and Biochemistry

Insect Molecular Biology and Biochemistry PDF Author: Lawrence I. Gilbert
Publisher: Academic Press
ISBN: 0123847486
Category : Science
Languages : en
Pages : 575

Get Book Here

Book Description
The publication of the extensive seven-volume work Comprehensive Molecular Insect Science provided a complete reference encompassing important developments and achievements in modern insect science. One of the most swiftly moving areas in entomological and comparative research is molecular biology, and this volume, Insect Molecular Biology and Biochemistry, is designed for those who desire a comprehensive yet concise work on important aspects of this topic. This volume contains ten fully revised or rewritten chapters from the original series as well as five completely new chapters on topics such as insect immunology, insect genomics, RNAi, and molecular biology of circadian rhythms and circadian behavior. The topics included are key to an understanding of insect development, with emphasis on the cuticle, digestive properties, and the transport of lipids; extensive and integrated chapters on cytochrome P450s; and the role of transposable elements in the developmental processes as well as programmed cell death. This volume will be of great value to senior investigators, graduate students, post-doctoral fellows and advanced undergraduate research students. It can also be used as a reference for graduate courses and seminars on the topic. Chapters will also be valuable to the applied biologist or entomologist, providing the requisite understanding necessary for probing the more applied research areas related to insect control. - Topics specially selected by the editor-in-chief of the original major reference work - Fully revised and new contributions bring together the latest research in the rapidly moving fields of insect molecular biology and insect biochemistry, including coverage of development, physiology, immunity and proteomics - Full-color provides readers with clear, useful illustrations to highlight important research findings

Environmental Health Perspectives

Environmental Health Perspectives PDF Author:
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 674

Get Book Here

Book Description


Human Dna Polymerases: Biology, Medicine And Biotechnology

Human Dna Polymerases: Biology, Medicine And Biotechnology PDF Author: Giovanni Maga
Publisher: World Scientific
ISBN: 9813226420
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
Maintenance of the information embedded in the genomic DNA sequence is essential for life. DNA polymerases play pivotal roles in the complex processes that maintain genetic integrity. Besides their tasks in vivo, DNA polymerases are the workhorses in numerous biotechnology applications such as the polymerase chain reaction (PCR), cDNA cloning, next generation sequencing, nucleic acids based diagnostics and in techniques to analyze ancient and otherwise damaged DNA (e.g. for forensic applications). Moreover, some diseases are related to DNA polymerase defects and chemotherapy through inhibition of DNA polymerases is used to fight HIV, Herpes and Hepatitis B and C infections. This book focuses on (i) biology of DNA polymerases, (ii) medical aspects of DNA polymerases and (iii) biotechnological applications of DNA polymerases. It is intended for a wide audience from basic scientists, to diagnostic laboratories, to companies and to clinicians, who seek a better understanding and the practical use of these fascinating enzymes.

Water in Biological and Chemical Processes

Water in Biological and Chemical Processes PDF Author: Biman Bagchi
Publisher: Cambridge University Press
ISBN: 1107037298
Category : Medical
Languages : en
Pages : 383

Get Book Here

Book Description
A unified overview of the dynamical properties of water and its unique and diverse role in biological and chemical processes.

Research Awards Index

Research Awards Index PDF Author:
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 776

Get Book Here

Book Description


Biology for AP ® Courses

Biology for AP ® Courses PDF Author: Julianne Zedalis
Publisher:
ISBN: 9781947172401
Category : Biology
Languages : en
Pages : 1923

Get Book Here

Book Description
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.

Industrial Enzymes

Industrial Enzymes PDF Author: Julio Polaina
Publisher: Springer Science & Business Media
ISBN: 1402053770
Category : Science
Languages : en
Pages : 629

Get Book Here

Book Description
Recent developments in genetic engineering and protein chemistry are bringing ever more powerful means of analysis to bear on the study of enzyme structure. This volume reviews the most important types of industrial enzymes. In a balanced manner it covers three interrelated aspects of paramount importance for enzyme performance: three-dimensional protein structure, physicochemical and catalytic properties, and the range of both classical and novel applications.