A Geometric Approach to Thermomechanics of Dissipating Continua

A Geometric Approach to Thermomechanics of Dissipating Continua PDF Author: Lalao Rakotomanana
Publisher: Springer Science & Business Media
ISBN: 0817681329
Category : Mathematics
Languages : en
Pages : 272

Get Book

Book Description
Across the centuries, the development and growth of mathematical concepts have been strongly stimulated by the needs of mechanics. Vector algebra was developed to describe the equilibrium of force systems and originated from Stevin's experiments (1548-1620). Vector analysis was then introduced to study velocity fields and force fields. Classical dynamics required the differential calculus developed by Newton (1687). Nevertheless, the concept of particle acceleration was the starting point for introducing a structured spacetime. Instantaneous velocity involved the set of particle positions in space. Vector algebra theory was not sufficient to compare the different velocities of a particle in the course of time. There was a need to (parallel) transport these velocities at a single point before any vector algebraic operation. The appropriate mathematical structure for this transport was the connection. I The Euclidean connection derived from the metric tensor of the referential body was the only connection used in mechanics for over two centuries. Then, major steps in the evolution of spacetime concepts were made by Einstein in 1905 (special relativity) and 1915 (general relativity) by using Riemannian connection. Slightly later, nonrelativistic spacetime which includes the main features of general relativity I It took about one and a half centuries for connection theory to be accepted as an independent theory in mathematics. Major steps for the connection concept are attributed to a series of findings: Riemann 1854, Christoffel 1869, Ricci 1888, Levi-Civita 1917, WeyJ 1918, Cartan 1923, Eshermann 1950.

A Geometric Approach to Thermomechanics of Dissipating Continua

A Geometric Approach to Thermomechanics of Dissipating Continua PDF Author: Lalao Rakotomanana
Publisher: Springer Science & Business Media
ISBN: 0817681329
Category : Mathematics
Languages : en
Pages : 272

Get Book

Book Description
Across the centuries, the development and growth of mathematical concepts have been strongly stimulated by the needs of mechanics. Vector algebra was developed to describe the equilibrium of force systems and originated from Stevin's experiments (1548-1620). Vector analysis was then introduced to study velocity fields and force fields. Classical dynamics required the differential calculus developed by Newton (1687). Nevertheless, the concept of particle acceleration was the starting point for introducing a structured spacetime. Instantaneous velocity involved the set of particle positions in space. Vector algebra theory was not sufficient to compare the different velocities of a particle in the course of time. There was a need to (parallel) transport these velocities at a single point before any vector algebraic operation. The appropriate mathematical structure for this transport was the connection. I The Euclidean connection derived from the metric tensor of the referential body was the only connection used in mechanics for over two centuries. Then, major steps in the evolution of spacetime concepts were made by Einstein in 1905 (special relativity) and 1915 (general relativity) by using Riemannian connection. Slightly later, nonrelativistic spacetime which includes the main features of general relativity I It took about one and a half centuries for connection theory to be accepted as an independent theory in mathematics. Major steps for the connection concept are attributed to a series of findings: Riemann 1854, Christoffel 1869, Ricci 1888, Levi-Civita 1917, WeyJ 1918, Cartan 1923, Eshermann 1950.

Differential Geometry and Kinematics of Continua

Differential Geometry and Kinematics of Continua PDF Author: John D Clayton
Publisher: World Scientific
ISBN: 9814616052
Category : Mathematics
Languages : en
Pages : 192

Get Book

Book Description
This book provides definitions and mathematical derivations of fundamental relationships of tensor analysis encountered in nonlinear continuum mechanics and continuum physics, with a focus on finite deformation kinematics and classical differential geometry. Of particular interest are anholonomic aspects arising from a multiplicative decomposition of the deformation gradient into two terms, neither of which in isolation necessarily obeys the integrability conditions satisfied by the gradient of a smooth vector field. The concise format emphasizes clarity and ease of reference, and detailed step-by-step derivations of most analytical results are provided. Contents: IntroductionGeometric FundamentalsKinematics of Integrable DeformationGeometry of Anholonomic DeformationKinematics of Anholonomic DeformationList of SymbolsBibliographyIndex Readership: Researchers in mathematical physics and engineering mechanics. Key Features:Presentation of mathematical operations and examples in anholonomic space associated with a multiplicative decomposition (e.g., of the gradient of motion) is more general and comprehensive than any given elsewhere and contains original ideas and new resultsLine-by-line derivations are frequent and exhaustive, to facilitate practice and enable verification of final resultsGeneral analysis is given in generic curvilinear coordinates; particular sections deal with applications and examples in Cartesian, cylindrical, spherical, and convected coordinates. Indicial and direct notations of tensor calculus enable connections with historic and modern literature, respectivelyKeywords:Differential Geometry;Tensor Analysis;Continuum Mechanics;Kinematics;Deformation;Anholonomic Coordinates

Mechanics of Generalized Continua

Mechanics of Generalized Continua PDF Author: Holm Altenbach
Publisher: Springer Science & Business Media
ISBN: 364219219X
Category : Technology & Engineering
Languages : en
Pages : 355

Get Book

Book Description
This collection on „Mechanics of Generalized Continua - from Micromechanical Basics to Engineering Applications“ brings together leading scientists in this field from France, Russian Federation, and Germany. The attention in this publication is be focussed on the most recent research items, i.e., - new models, - application of well-known models to new problems, - micro-macro aspects, - computational effort, - possibilities to identify the constitutive equations, and - old problems with incorrect or non-satisfying solutions based on the classical continua assumptions.

Covariance and Gauge Invariance in Continuum Physics

Covariance and Gauge Invariance in Continuum Physics PDF Author: Lalaonirina R. Rakotomanana
Publisher: Springer
ISBN: 331991782X
Category : Science
Languages : en
Pages : 325

Get Book

Book Description
This book presents a Lagrangian approach model to formulate various fields of continuum physics, ranging from gradient continuum elasticity to relativistic gravito-electromagnetism. It extends the classical theories based on Riemann geometry to Riemann-Cartan geometry, and then describes non-homogeneous continuum and spacetime with torsion in Einstein-Cartan relativistic gravitation. It investigates two aspects of invariance of the Lagrangian: covariance of formulation following the method of Lovelock and Rund, and gauge invariance where the active diffeomorphism invariance is considered by using local Poincaré gauge theory according to the Utiyama method. Further, it develops various extensions of strain gradient continuum elasticity, relativistic gravitation and electromagnetism when the torsion field of the Riemann-Cartan continuum is not equal to zero. Lastly, it derives heterogeneous wave propagation equations within twisted and curved manifolds and proposes a relation between electromagnetic potential and torsion tensor.

Quantum-Statistical Models of Hot Dense Matter

Quantum-Statistical Models of Hot Dense Matter PDF Author: Arnold F. Nikiforov
Publisher: Springer Science & Business Media
ISBN: 9783764321833
Category : Law
Languages : en
Pages : 456

Get Book

Book Description
This book studies the widely used theoretical models for calculating properties of hot dense matter. Calculations are illustrated by plots and tables, and they are compared with experimental results. The purpose is to help understanding of atomic physics in hot plasma and to aid in developing efficient and robust computer codes for calculating opacity and equations of state for arbitrary material in a wide range of temperatures and densities.

The Einstein Equations and the Large Scale Behavior of Gravitational Fields

The Einstein Equations and the Large Scale Behavior of Gravitational Fields PDF Author: Piotr T. Chruściel
Publisher: Springer Science & Business Media
ISBN: 9783764371302
Category : Science
Languages : en
Pages : 500

Get Book

Book Description
Accompanying DVD-ROM contains the electronic proceedings of the summer school on mathematical general relativity and global properties of solutions of Einstein's equations held at Cargèse, Corsica, France, July 20-Aug. 10, 2002.

Computational Bioengineering

Computational Bioengineering PDF Author: M. Cerrolaza
Publisher: World Scientific
ISBN: 1860944655
Category : Technology & Engineering
Languages : en
Pages : 254

Get Book

Book Description
This book is a significant contribution to the state of the art in the field of computational bioengineering ? from the need for a living human database to meshless methods in biomechanics, from computational mechanobiology to the evaluation of stresses in hip prosthesis replacement, from lattice Boltzmann methods for analyzing blood flow to the analysis of fluid movement in long bones, among other interesting topics treated herein. Well-known international experts in bioengineering have contributed to the book, giving it a unique style and cutting-edge material for graduate students, academic researchers and design bioengineers, as well as those interested in getting a better understanding of such complex and fascinating human and living processes.

Mechanics of Material Forces

Mechanics of Material Forces PDF Author: Paul Steinmann
Publisher: Springer Science & Business Media
ISBN: 038726261X
Category : Technology & Engineering
Languages : en
Pages : 331

Get Book

Book Description
The notion dealt with in this volume of proceedings is often traced back to the late 19th-century writings of a rather obscure scientist, C. V. Burton. A probable reason for this is that the painstaking de ciphering of this author's paper in the Philosophical Magazine (Vol. 33, pp. 191-204, 1891) seems to reveal a notion that was introduced in math ematical form much later, that of local structural rearrangement. This notion obviously takes place on the material manifold of modern con tinuum mechanics. It is more or less clear that seemingly different phe nomena - phase transition, local destruction of matter in the form of the loss of local ordering (such as in the appearance of structural defects or of the loss of cohesion by the appearance of damage or the exten sion of cracks), plasticity, material growth in the bulk or at the surface by accretion, wear, and the production of debris - should enter a com mon framework where, by pure logic, the material manifold has to play a prominent role. Finding the mathematical formulation for this was one of the great achievements of J. D. Eshelby. He was led to consider the apparent but true motion or displacement of embedded material inhomogeneities, and thus he began to investigate the "driving force" causing this motion or displacement, something any good mechanician would naturally introduce through the duahty inherent in mechanics since J. L. d'Alembert.

Mathematical Modelling in Solid Mechanics

Mathematical Modelling in Solid Mechanics PDF Author: Francesco dell'Isola
Publisher: Springer
ISBN: 9811037647
Category : Science
Languages : en
Pages : 327

Get Book

Book Description
This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling analysis of elasto-plastic structures engineering optimization and design, global optimization and related algorithms The book presents selected papers presented at ETAMM 2016. It includes new and original results written by internationally recognized specialists.

Continuum Mechanics Through the Twentieth Century

Continuum Mechanics Through the Twentieth Century PDF Author: Gerard A Maugin
Publisher: Springer Science & Business Media
ISBN: 9400763530
Category : Science
Languages : en
Pages : 321

Get Book

Book Description
This overview of the development of continuum mechanics throughout the twentieth century is unique and ambitious. Utilizing a historical perspective, it combines an exposition on the technical progress made in the field and a marked interest in the role played by remarkable individuals and scientific schools and institutions on a rapidly evolving social background. It underlines the newly raised technical questions and their answers, and the ongoing reflections on the bases of continuum mechanics associated, or in competition, with other branches of the physical sciences, including thermodynamics. The emphasis is placed on the development of a more realistic modeling of deformable solids and the exploitation of new mathematical tools. The book presents a balanced appraisal of advances made in various parts of the world. The author contributes his technical expertise, personal recollections, and international experience to this general overview, which is very informative albeit concise.