The d-bar Neumann Problem and Schrödinger Operators

The d-bar Neumann Problem and Schrödinger Operators PDF Author: Friedrich Haslinger
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110377837
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
The topic of this book is located at the intersection of complex analysis, operator theory and partial differential equations. It begins with results on the canonical solution operator to restricted to Bergman spaces of holomorphic d-bar functions in one and several complex variables.These operators are Hankel operators of special type. In the following the general complex is investigated on d-bar spaces over bounded pseudoconvex domains and on weighted d-bar spaces. The main part is devoted to the spectral analysis of the complex Laplacian and to compactness of the Neumann operator. The last part contains a detailed account of the application of the methods to Schrödinger operators, Pauli and Dirac operators and to Witten-Laplacians. It is assumed that the reader has a basic knowledge of complex analysis, functional analysis and topology. With minimal prerequisites required, this book provides a systematic introduction to an active area of research for both students at a bachelor level and mathematicians.

The d-bar Neumann Problem and Schrödinger Operators

The d-bar Neumann Problem and Schrödinger Operators PDF Author: Friedrich Haslinger
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110377837
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
The topic of this book is located at the intersection of complex analysis, operator theory and partial differential equations. It begins with results on the canonical solution operator to restricted to Bergman spaces of holomorphic d-bar functions in one and several complex variables.These operators are Hankel operators of special type. In the following the general complex is investigated on d-bar spaces over bounded pseudoconvex domains and on weighted d-bar spaces. The main part is devoted to the spectral analysis of the complex Laplacian and to compactness of the Neumann operator. The last part contains a detailed account of the application of the methods to Schrödinger operators, Pauli and Dirac operators and to Witten-Laplacians. It is assumed that the reader has a basic knowledge of complex analysis, functional analysis and topology. With minimal prerequisites required, this book provides a systematic introduction to an active area of research for both students at a bachelor level and mathematicians.

Lectures on the L2-Sobolev Theory of the [d-bar]-Neumann Problem

Lectures on the L2-Sobolev Theory of the [d-bar]-Neumann Problem PDF Author: Emil J. Straube
Publisher: European Mathematical Society
ISBN: 9783037190760
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
This book provides a thorough and self-contained introduction to the $\bar{\partial}$-Neumann problem, leading up to current research, in the context of the $\mathcal{L}^{2}$-Sobolev theory on bounded pseudoconvex domains in $\mathbb{C}^{n}$. It grew out of courses for advanced graduate students and young researchers given by the author at the Erwin Schrodinger International Institute for Mathematical Physics and at Texas A & M University. The introductory chapter provides an overview of the contents and puts them in historical perspective. The second chapter presents the basic $\mathcal{L}^{2}$-theory. Following is a chapter on the subelliptic estimates on strictly pseudoconvex domains. The two final chapters on compactness and on regularity in Sobolev spaces bring the reader to the frontiers of research. Prerequisites are a solid background in basic complex and functional analysis, including the elementary $\mathcal{L}^{2}$-Sobolev theory and distributions. Some knowledge in several complex variables is helpful. Concerning partial differential equations, not much is assumed. The elliptic regularity of the Dirichlet problem for the Laplacian is quoted a few times, but the ellipticity results needed for elliptic regularization in the third chapter are proved from scratch.

The Neumann Problem for the Cauchy-Riemann Complex. (AM-75), Volume 75

The Neumann Problem for the Cauchy-Riemann Complex. (AM-75), Volume 75 PDF Author: Gerald B. Folland
Publisher: Princeton University Press
ISBN: 1400881528
Category : Mathematics
Languages : en
Pages : 156

Get Book Here

Book Description
Part explanation of important recent work, and part introduction to some of the techniques of modern partial differential equations, this monograph is a self-contained exposition of the Neumann problem for the Cauchy-Riemann complex and certain of its applications. The authors prove the main existence and regularity theorems in detail, assuming only a knowledge of the basic theory of differentiable manifolds and operators on Hilbert space. They discuss applications to the theory of several complex variables, examine the associated complex on the boundary, and outline other techniques relevant to these problems. In an appendix they develop the functional analysis of differential operators in terms of Sobolev spaces, to the extent it is required for the monograph.

Two-Point Boundary Value Problems: Lower and Upper Solutions

Two-Point Boundary Value Problems: Lower and Upper Solutions PDF Author: C. De Coster
Publisher: Elsevier
ISBN: 0080462472
Category : Mathematics
Languages : en
Pages : 502

Get Book Here

Book Description
This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems PDF Author: Dumitru Motreanu
Publisher: Springer Science & Business Media
ISBN: 1461493234
Category : Mathematics
Languages : en
Pages : 465

Get Book Here

Book Description
This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.

Partial Differential Equations

Partial Differential Equations PDF Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467

Get Book Here

Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Nonlinear Differential Problems with Smooth and Nonsmooth Constraints

Nonlinear Differential Problems with Smooth and Nonsmooth Constraints PDF Author: Dumitru Motreanu
Publisher: Academic Press
ISBN: 0128133937
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
Nonlinear Differential Problems with Smooth and Nonsmooth Constraints systematically evaluates how to solve boundary value problems with smooth and nonsmooth constraints. Primarily covering nonlinear elliptic eigenvalue problems and quasilinear elliptic problems using techniques amalgamated from a range of sophisticated nonlinear analysis domains, the work is suitable for PhD and other early career researchers seeking solutions to nonlinear differential equations. Although an advanced work, the book is self-contained, requiring only graduate-level knowledge of functional analysis and topology. Whenever suitable, open problems are stated and partial solutions proposed. The work is accompanied by end-of-chapter problems and carefully curated references. - Builds from functional analysis and operator theory, to nonlinear elliptic systems and control problems - Outlines the evolution of the main ideas of nonlinear analysis and their roots in classical mathematics - Presented with numerous end-of-chapter exercises and sophisticated open problems - Illustrated with pertinent industrial and engineering numerical examples and applications - Accompanied by hundreds of curated references, saving readers hours of research in conducting literature analysis

Nonlinear Diffusion Equations and Their Equilibrium States, 3

Nonlinear Diffusion Equations and Their Equilibrium States, 3 PDF Author: N.G Lloyd
Publisher: Springer Science & Business Media
ISBN: 1461203937
Category : Mathematics
Languages : en
Pages : 567

Get Book Here

Book Description
Nonlinear diffusion equations have held a prominent place in the theory of partial differential equations, both for the challenging and deep math ematical questions posed by such equations and the important role they play in many areas of science and technology. Examples of current inter est are biological and chemical pattern formation, semiconductor design, environmental problems such as solute transport in groundwater flow, phase transitions and combustion theory. Central to the theory is the equation Ut = ~cp(U) + f(u). Here ~ denotes the n-dimensional Laplacian, cp and f are given functions and the solution is defined on some domain n x [0, T] in space-time. FUn damental questions concern the existence, uniqueness and regularity of so lutions, the existence of interfaces or free boundaries, the question as to whether or not the solution can be continued for all time, the asymptotic behavior, both in time and space, and the development of singularities, for instance when the solution ceases to exist after finite time, either through extinction or through blow up.

Problems in Reactor Shielding Physics

Problems in Reactor Shielding Physics PDF Author: Dmitriĭ Leonidovich Broder
Publisher:
ISBN:
Category : Nuclear reactors
Languages : en
Pages : 558

Get Book Here

Book Description


The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type

The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type PDF Author: Thomas H. Otway
Publisher: Springer
ISBN: 3642244157
Category : Mathematics
Languages : en
Pages : 219

Get Book Here

Book Description
Partial differential equations of mixed elliptic-hyperbolic type arise in diverse areas of physics and geometry, including fluid and plasma dynamics, optics, cosmology, traffic engineering, projective geometry, geometric variational theory, and the theory of isometric embeddings. And yet even the linear theory of these equations is at a very early stage. This text examines various Dirichlet problems which can be formulated for equations of Keldysh type, one of the two main classes of linear elliptic-hyperbolic equations. Open boundary conditions (in which data are prescribed on only part of the boundary) and closed boundary conditions (in which data are prescribed on the entire boundary) are both considered. Emphasis is on the formulation of boundary conditions for which solutions can be shown to exist in an appropriate function space. Specific applications to plasma physics, optics, and analysis on projective spaces are discussed. (From the preface)