Zeta Functions of Groups and Rings

Zeta Functions of Groups and Rings PDF Author: Marcus du Sautoy
Publisher: Springer Science & Business Media
ISBN: 354074701X
Category : Mathematics
Languages : en
Pages : 217

Get Book Here

Book Description
Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an investigation of functional equations. Many important examples of zeta functions are calculated and recorded providing an important data base of explicit examples and methods for calculation.

Zeta Functions of Groups and Rings

Zeta Functions of Groups and Rings PDF Author: Marcus du Sautoy
Publisher: Springer Science & Business Media
ISBN: 354074701X
Category : Mathematics
Languages : en
Pages : 217

Get Book Here

Book Description
Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an investigation of functional equations. Many important examples of zeta functions are calculated and recorded providing an important data base of explicit examples and methods for calculation.

Zeta Functions in Algebra and Geometry

Zeta Functions in Algebra and Geometry PDF Author: Antonio Campillo
Publisher: American Mathematical Soc.
ISBN: 0821869000
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
Contains the proceedings of the Second International Workshop on Zeta Functions in Algebra and Geometry held May 3-7, 2010 at the Universitat de les Illes Balears, Palma de Mallorca, Spain. The conference focused on the following topics: arithmetic and geometric aspects of local, topological, and motivic zeta functions, Poincare series of valuations, zeta functions of groups, rings, and representations, prehomogeneous vector spaces and their zeta functions, and height zeta functions.

Lectures on Profinite Topics in Group Theory

Lectures on Profinite Topics in Group Theory PDF Author: Benjamin Klopsch
Publisher: Cambridge University Press
ISBN: 1139495658
Category : Mathematics
Languages : en
Pages : 175

Get Book Here

Book Description
In this book, three authors introduce readers to strong approximation methods, analytic pro-p groups and zeta functions of groups. Each chapter illustrates connections between infinite group theory, number theory and Lie theory. The first introduces the theory of compact p-adic Lie groups. The second explains how methods from linear algebraic groups can be utilised to study the finite images of linear groups. The final chapter provides an overview of zeta functions associated to groups and rings. Derived from an LMS/EPSRC Short Course for graduate students, this book provides a concise introduction to a very active research area and assumes less prior knowledge than existing monographs or original research articles. Accessible to beginning graduate students in group theory, it will also appeal to researchers interested in infinite group theory and its interface with Lie theory and number theory.

Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory

Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory PDF Author: Gebhard Böckle
Publisher: Springer
ISBN: 3319705660
Category : Mathematics
Languages : en
Pages : 753

Get Book Here

Book Description
This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved. The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It offers a valuable resource for all researchers, from graduate students through established experts, who are interested in the computational aspects of algebra, geometry, and/or number theory.

Galois Theory, Rings, Algebraic Groups and Their Applications

Galois Theory, Rings, Algebraic Groups and Their Applications PDF Author: Simeon Ivanov
Publisher: American Mathematical Soc.
ISBN: 9780821831403
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This collection consists of original work on Galois theory, rings and algebras, algebraic geometry, group representations, algebraic K—theory and some of their applications.

Shintani Zeta Functions

Shintani Zeta Functions PDF Author: Akihiko Yukie
Publisher: Cambridge University Press
ISBN: 0521448042
Category : Mathematics
Languages : en
Pages : 355

Get Book Here

Book Description
This is amongst the first books on the theory of prehomogeneous vector spaces, and represents the author's deep study of the subject.

Cyclotomic Fields and Zeta Values

Cyclotomic Fields and Zeta Values PDF Author: John Coates
Publisher: Springer Science & Business Media
ISBN: 3540330690
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
Written by two leading workers in the field, this brief but elegant book presents in full detail the simplest proof of the "main conjecture" for cyclotomic fields. Its motivation stems not only from the inherent beauty of the subject, but also from the wider arithmetic interest of these questions. From the reviews: "The text is written in a clear and attractive style, with enough explanation helping the reader orientate in the midst of technical details." --ZENTRALBLATT MATH

Groups St Andrews 2013

Groups St Andrews 2013 PDF Author: C. M. Campbell
Publisher: Cambridge University Press
ISBN: 1316467910
Category : Mathematics
Languages : en
Pages : 503

Get Book Here

Book Description
Every four years, leading researchers gather to survey the latest developments in all aspects of group theory. Since 1981, the proceedings of those meetings have provided a regular snapshot of the state of the art in group theory and helped to shape the direction of research in the field. This volume contains selected papers from the 2013 meeting held in St Andrews. It begins with major articles from each of the four main speakers: Emmanuel Breuillard (Paris-Sud), Martin Liebeck (Imperial College London), Alan Reid (Texas) and Karen Vogtmann (Cornell). These are followed by, in alphabetical order, survey articles contributed by other conference participants, which cover a wide spectrum of modern group theory.

Theory and Applications of Special Functions

Theory and Applications of Special Functions PDF Author: Mourad E. H. Ismail
Publisher: Springer Science & Business Media
ISBN: 0387242333
Category : Mathematics
Languages : en
Pages : 497

Get Book Here

Book Description
A collection of articles on various aspects of q-series and special functions dedicated to Mizan Rahman. It also includes an article by Askey, Ismail, and Koelink on Rahman’s mathematical contributions and how they influenced the recent upsurge in the subject.

Introduction to Siegel Modular Forms and Dirichlet Series

Introduction to Siegel Modular Forms and Dirichlet Series PDF Author: Anatoli Andrianov
Publisher: Springer Science & Business Media
ISBN: 0387787534
Category : Mathematics
Languages : en
Pages : 188

Get Book Here

Book Description
Several years ago I was invited to an American university to give one-term graduate course on Siegel modular forms, Hecke operators, and related zeta functions. The idea to present in a concise but basically complete and self-contained form an int- duction to an important and developing area based partly on my own work attracted me. I accepted the invitation and started to prepare the course. Unfortunately, the visit was not realized. But the idea of such a course continued to be alive till after a number of years this book was ?nally completed. I hope that this short book will serve to attract young researchers to this beautiful ?eld, and that it will simplify and make more pleasant the initial steps. No special knowledge is presupposed for reading this book beyond standard courses in algebra and calculus (one and several variables), although some skill in working with mathematical texts would be helpful. The reader will judge whether the result was worth the effort. Dedications. The ideas of Goro Shimura exerted a deep in?uence on the number theory of the second half of the twentieth century in general and on the author’s formation in particular. When Andre ` Weil was signing a copy of his “Basic Number Theory” to my son, he wrote in Russian, ”To Fedor Anatolievich hoping that he will become a number theoretist”. Fedor has chosen computer science. Now I pass on the idea to Fedor’s daughter, Alexandra Fedorovna.