Author: Peter Hippe
Publisher: Springer Science & Business Media
ISBN: 184628323X
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Actuator saturation is probably the most frequent nonlinearity encountered in control applications. Input saturation leads to controller windup, removable by structural modification during compensator realization and plant windup which calls for additional dynamics. This book presents solutions to the windup prevention problem for stable and unstable single-input-single-output and multiple-input-multiple-output (MIMO) systems.
Windup in Control
Author: Peter Hippe
Publisher: Springer Science & Business Media
ISBN: 184628323X
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Actuator saturation is probably the most frequent nonlinearity encountered in control applications. Input saturation leads to controller windup, removable by structural modification during compensator realization and plant windup which calls for additional dynamics. This book presents solutions to the windup prevention problem for stable and unstable single-input-single-output and multiple-input-multiple-output (MIMO) systems.
Publisher: Springer Science & Business Media
ISBN: 184628323X
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Actuator saturation is probably the most frequent nonlinearity encountered in control applications. Input saturation leads to controller windup, removable by structural modification during compensator realization and plant windup which calls for additional dynamics. This book presents solutions to the windup prevention problem for stable and unstable single-input-single-output and multiple-input-multiple-output (MIMO) systems.
Modern Anti-windup Synthesis
Author: Luca Zaccarian
Publisher: Princeton University Press
ISBN: 1400839025
Category : Mathematics
Languages : en
Pages : 303
Book Description
This book provides a wide variety of state-space--based numerical algorithms for the synthesis of feedback algorithms for linear systems with input saturation. Specifically, it addresses and solves the anti-windup problem, presenting the objectives and terminology of the problem, the mathematical tools behind anti-windup algorithms, and more than twenty algorithms for anti-windup synthesis, illustrated with examples. Luca Zaccarian and Andrew Teel's modern method--combining a state-space approach with algorithms generated by solving linear matrix inequalities--treats MIMO and SISO systems with equal ease. The book, aimed at control engineers as well as graduate students, ranges from very simple anti-windup construction to sophisticated anti-windup algorithms for nonlinear systems. Describes the fundamental objectives and principles behind anti-windup synthesis for control systems with actuator saturation Takes a modern, state-space approach to synthesis that applies to both SISO and MIMO systems Presents algorithms as linear matrix inequalities that can be readily solved with widely available software Explains mathematical concepts that motivate synthesis algorithms Uses nonlinear performance curves to quantify performance relative to disturbances of varying magnitudes Includes anti-windup algorithms for a class of Euler-Lagrange nonlinear systems Traces the history of anti-windup research through an extensive annotated bibliography
Publisher: Princeton University Press
ISBN: 1400839025
Category : Mathematics
Languages : en
Pages : 303
Book Description
This book provides a wide variety of state-space--based numerical algorithms for the synthesis of feedback algorithms for linear systems with input saturation. Specifically, it addresses and solves the anti-windup problem, presenting the objectives and terminology of the problem, the mathematical tools behind anti-windup algorithms, and more than twenty algorithms for anti-windup synthesis, illustrated with examples. Luca Zaccarian and Andrew Teel's modern method--combining a state-space approach with algorithms generated by solving linear matrix inequalities--treats MIMO and SISO systems with equal ease. The book, aimed at control engineers as well as graduate students, ranges from very simple anti-windup construction to sophisticated anti-windup algorithms for nonlinear systems. Describes the fundamental objectives and principles behind anti-windup synthesis for control systems with actuator saturation Takes a modern, state-space approach to synthesis that applies to both SISO and MIMO systems Presents algorithms as linear matrix inequalities that can be readily solved with widely available software Explains mathematical concepts that motivate synthesis algorithms Uses nonlinear performance curves to quantify performance relative to disturbances of varying magnitudes Includes anti-windup algorithms for a class of Euler-Lagrange nonlinear systems Traces the history of anti-windup research through an extensive annotated bibliography
Practical PID Control
Author: Antonio Visioli
Publisher: Springer Science & Business Media
ISBN: 1846285860
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
This book focuses on those functionalities that can provide significant improvements in Proportional–integral–derivative (PID) performance in combination with parameter tuning. In particular, the choice of filter to make the controller proper, the use of a feedforward action and the selection of an anti-windup strategy are addressed. The book gives the reader new methods for improving the performance of the most widely applied form of control in industry.
Publisher: Springer Science & Business Media
ISBN: 1846285860
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
This book focuses on those functionalities that can provide significant improvements in Proportional–integral–derivative (PID) performance in combination with parameter tuning. In particular, the choice of filter to make the controller proper, the use of a feedforward action and the selection of an anti-windup strategy are addressed. The book gives the reader new methods for improving the performance of the most widely applied form of control in industry.
PID Controllers
Author: Karl Johan Åström
Publisher: Isa
ISBN: 9781556175169
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
Publisher: Isa
ISBN: 9781556175169
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
Feedback Systems
Author: Karl Johan Åström
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
PID Control System Design and Automatic Tuning using MATLAB/Simulink
Author: Liuping Wang
Publisher: John Wiley & Sons
ISBN: 1119469341
Category : Science
Languages : en
Pages : 366
Book Description
Covers PID control systems from the very basics to the advanced topics This book covers the design, implementation and automatic tuning of PID control systems with operational constraints. It provides students, researchers, and industrial practitioners with everything they need to know about PID control systems—from classical tuning rules and model-based design to constraints, automatic tuning, cascade control, and gain scheduled control. PID Control System Design and Automatic Tuning using MATLAB/Simulink introduces PID control system structures, sensitivity analysis, PID control design, implementation with constraints, disturbance observer-based PID control, gain scheduled PID control systems, cascade PID control systems, PID control design for complex systems, automatic tuning and applications of PID control to unmanned aerial vehicles. It also presents resonant control systems relevant to many engineering applications. The implementation of PID control and resonant control highlights how to deal with operational constraints. Provides unique coverage of PID Control of unmanned aerial vehicles (UAVs), including mathematical models of multi-rotor UAVs, control strategies of UAVs, and automatic tuning of PID controllers for UAVs Provides detailed descriptions of automatic tuning of PID control systems, including relay feedback control systems, frequency response estimation, Monte-Carlo simulation studies, PID controller design using frequency domain information, and MATLAB/Simulink simulation and implementation programs for automatic tuning Includes 15 MATLAB/Simulink tutorials, in a step-by-step manner, to illustrate the design, simulation, implementation and automatic tuning of PID control systems Assists lecturers, teaching assistants, students, and other readers to learn PID control with constraints and apply the control theory to various areas. Accompanying website includes lecture slides and MATLAB/ Simulink programs PID Control System Design and Automatic Tuning using MATLAB/Simulink is intended for undergraduate electrical, chemical, mechanical, and aerospace engineering students, and will greatly benefit postgraduate students, researchers, and industrial personnel who work with control systems and their applications.
Publisher: John Wiley & Sons
ISBN: 1119469341
Category : Science
Languages : en
Pages : 366
Book Description
Covers PID control systems from the very basics to the advanced topics This book covers the design, implementation and automatic tuning of PID control systems with operational constraints. It provides students, researchers, and industrial practitioners with everything they need to know about PID control systems—from classical tuning rules and model-based design to constraints, automatic tuning, cascade control, and gain scheduled control. PID Control System Design and Automatic Tuning using MATLAB/Simulink introduces PID control system structures, sensitivity analysis, PID control design, implementation with constraints, disturbance observer-based PID control, gain scheduled PID control systems, cascade PID control systems, PID control design for complex systems, automatic tuning and applications of PID control to unmanned aerial vehicles. It also presents resonant control systems relevant to many engineering applications. The implementation of PID control and resonant control highlights how to deal with operational constraints. Provides unique coverage of PID Control of unmanned aerial vehicles (UAVs), including mathematical models of multi-rotor UAVs, control strategies of UAVs, and automatic tuning of PID controllers for UAVs Provides detailed descriptions of automatic tuning of PID control systems, including relay feedback control systems, frequency response estimation, Monte-Carlo simulation studies, PID controller design using frequency domain information, and MATLAB/Simulink simulation and implementation programs for automatic tuning Includes 15 MATLAB/Simulink tutorials, in a step-by-step manner, to illustrate the design, simulation, implementation and automatic tuning of PID control systems Assists lecturers, teaching assistants, students, and other readers to learn PID control with constraints and apply the control theory to various areas. Accompanying website includes lecture slides and MATLAB/ Simulink programs PID Control System Design and Automatic Tuning using MATLAB/Simulink is intended for undergraduate electrical, chemical, mechanical, and aerospace engineering students, and will greatly benefit postgraduate students, researchers, and industrial personnel who work with control systems and their applications.
PID and Predictive Control of Electrical Drives and Power Converters using MATLAB / Simulink
Author: Liuping Wang
Publisher: John Wiley & Sons
ISBN: 1118339444
Category : Science
Languages : en
Pages : 369
Book Description
A timely introduction to current research on PID and predictive control by one of the leading authors on the subject PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice. The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis. The book contains sections on closed-loop performance analysis in both frequency domain and time domain, presented to help the designer in selection of controller parameters and validation of the control system. Continuous-time model predictive control systems are designed for the drives and power supplies, and operational constraints are imposed in the design. Discrete-time model predictive control systems are designed based on the discretization of the physical models, which will appeal to readers who are more familiar with sampled-data control system. Soft sensors and observers will be discussed for low cost implementation. Resonant control of the electric drives and power supply will be discussed to deal with the problems of bias in sensors and unbalanced three phase AC currents. Brings together both classical control systems and predictive control systems in a logical style from introductory through to advanced levels Demonstrates how simulation and experimental results are used to support theoretical analysis and the proposed design algorithms MATLAB and Simulink tutorials are given in each chapter to show the readers how to take the theory to applications. Includes MATLAB and Simulink software using xPC Target for teaching purposes A companion website is available Researchers and industrial engineers; and graduate students on electrical engineering courses will find this a valuable resource.
Publisher: John Wiley & Sons
ISBN: 1118339444
Category : Science
Languages : en
Pages : 369
Book Description
A timely introduction to current research on PID and predictive control by one of the leading authors on the subject PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice. The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis. The book contains sections on closed-loop performance analysis in both frequency domain and time domain, presented to help the designer in selection of controller parameters and validation of the control system. Continuous-time model predictive control systems are designed for the drives and power supplies, and operational constraints are imposed in the design. Discrete-time model predictive control systems are designed based on the discretization of the physical models, which will appeal to readers who are more familiar with sampled-data control system. Soft sensors and observers will be discussed for low cost implementation. Resonant control of the electric drives and power supply will be discussed to deal with the problems of bias in sensors and unbalanced three phase AC currents. Brings together both classical control systems and predictive control systems in a logical style from introductory through to advanced levels Demonstrates how simulation and experimental results are used to support theoretical analysis and the proposed design algorithms MATLAB and Simulink tutorials are given in each chapter to show the readers how to take the theory to applications. Includes MATLAB and Simulink software using xPC Target for teaching purposes A companion website is available Researchers and industrial engineers; and graduate students on electrical engineering courses will find this a valuable resource.
Process Identification and PID Control
Author: Su Whan Sung
Publisher: John Wiley & Sons
ISBN: 9780470824115
Category : Science
Languages : en
Pages : 352
Book Description
Process Identification and PID Control enables students and researchers to understand the basic concepts of feedback control, process identification, autotuning as well as design and implement feedback controllers, especially, PID controllers. The first The first two parts introduce the basics of process control and dynamics, analysis tools (Bode plot, Nyquist plot) to characterize the dynamics of the process, PID controllers and tuning, advanced control strategies which have been widely used in industry. Also, simple simulation techniques required for practical controller designs and research on process identification and autotuning are also included. Part 3 provides useful process identification methods in real industry. It includes several important identification algorithms to obtain frequency models or continuous-time/discrete-time transfer function models from the measured process input and output data sets. Part 4 introduces various relay feedback methods to activate the process effectively for process identification and controller autotuning. Combines the basics with recent research, helping novice to understand advanced topics Brings several industrially important topics together: Dynamics Process identification Controller tuning methods Written by a team of recognized experts in the area Includes all source codes and real-time simulated processes for self-practice Contains problems at the end of every chapter PowerPoint files with lecture notes available for instructor use
Publisher: John Wiley & Sons
ISBN: 9780470824115
Category : Science
Languages : en
Pages : 352
Book Description
Process Identification and PID Control enables students and researchers to understand the basic concepts of feedback control, process identification, autotuning as well as design and implement feedback controllers, especially, PID controllers. The first The first two parts introduce the basics of process control and dynamics, analysis tools (Bode plot, Nyquist plot) to characterize the dynamics of the process, PID controllers and tuning, advanced control strategies which have been widely used in industry. Also, simple simulation techniques required for practical controller designs and research on process identification and autotuning are also included. Part 3 provides useful process identification methods in real industry. It includes several important identification algorithms to obtain frequency models or continuous-time/discrete-time transfer function models from the measured process input and output data sets. Part 4 introduces various relay feedback methods to activate the process effectively for process identification and controller autotuning. Combines the basics with recent research, helping novice to understand advanced topics Brings several industrially important topics together: Dynamics Process identification Controller tuning methods Written by a team of recognized experts in the area Includes all source codes and real-time simulated processes for self-practice Contains problems at the end of every chapter PowerPoint files with lecture notes available for instructor use
Practical Process Control
Author: Cecil L. Smith
Publisher: John Wiley & Sons
ISBN: 0470431490
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
Practical Process Control (loop tuning and troubleshooting). This book differs from others on the market in several respects. First, the presentation is totally in the time domain (the word "LaPlace" is nowhere to be found). The focus of the book is actually troubleshooting, not tuning. If a controller is "tunable", the tuning procedure will be straightforward and uneventful. But if a loop is "untunable", difficulties will be experienced, usually early in the tuning effort. The nature of any difficulty provides valuable clues to what is rendering the loop "untunable". For example, if reducing the controller gain leads to increased oscillations, one should look for possible interaction with one or more other loops. Tuning difficulties are always symptoms of other problems; effective troubleshooting involves recognizing the clues, identifying the root cause of the problem, and making corrections. Furthermore, most loops are rendered "untunable" due to some aspect of the steady-state behavior of the process. Consequently, the book focuses more on the relationship of process control to steady-state process characteristics than to dynamic process characteristics. One prerequisite to effective troubleshooting is to "demystify" some of the characteristics of the PID control equations. One unique aspect of this book is that it explains in the time domain all aspects of the PID control equation (including as the difference between the parallel and series forms of the PID, the reset feedback form of the PID equation, reset windup protection, etc.) The book stresses an appropriate P&I (process and instrumentation) diagram as critical to successful tuning. If the P&I is not right, tuning difficulties are inevitable. Developing and analyzing P&I diagrams is a critical aspect of troubleshooting.
Publisher: John Wiley & Sons
ISBN: 0470431490
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
Practical Process Control (loop tuning and troubleshooting). This book differs from others on the market in several respects. First, the presentation is totally in the time domain (the word "LaPlace" is nowhere to be found). The focus of the book is actually troubleshooting, not tuning. If a controller is "tunable", the tuning procedure will be straightforward and uneventful. But if a loop is "untunable", difficulties will be experienced, usually early in the tuning effort. The nature of any difficulty provides valuable clues to what is rendering the loop "untunable". For example, if reducing the controller gain leads to increased oscillations, one should look for possible interaction with one or more other loops. Tuning difficulties are always symptoms of other problems; effective troubleshooting involves recognizing the clues, identifying the root cause of the problem, and making corrections. Furthermore, most loops are rendered "untunable" due to some aspect of the steady-state behavior of the process. Consequently, the book focuses more on the relationship of process control to steady-state process characteristics than to dynamic process characteristics. One prerequisite to effective troubleshooting is to "demystify" some of the characteristics of the PID control equations. One unique aspect of this book is that it explains in the time domain all aspects of the PID control equation (including as the difference between the parallel and series forms of the PID, the reset feedback form of the PID equation, reset windup protection, etc.) The book stresses an appropriate P&I (process and instrumentation) diagram as critical to successful tuning. If the P&I is not right, tuning difficulties are inevitable. Developing and analyzing P&I diagrams is a critical aspect of troubleshooting.
Fractional-order Systems and PID Controllers
Author: Kishore Bingi
Publisher: Springer Nature
ISBN: 3030339343
Category : Technology & Engineering
Languages : en
Pages : 267
Book Description
This book presents a detailed study on fractional-order, set-point, weighted PID control strategies and the development of curve-fitting-based approximation techniques for fractional-order parameters. Furthermore, in all the cases, it includes the Scilab-based commands and functions for easy implementation and better understanding, and to appeal to a wide range of readers working with the software. The presented Scilab-based toolbox is the first toolbox for fractional-order systems developed in open-source software. The toolboxes allow time and frequency domains as well as stability analysis of the fractional-order systems and controllers. The book also provides real-time examples of the control of process plants using the developed fractional-order based PID control strategies and the approximation techniques. The book is of interest to readers in the areas of fractional-order controllers, approximation techniques, process modeling, control, and optimization, both in industry and academia. In industry, the book is particularly valuable in the areas of research and development (R&D) as well as areas where PID controllers suffice – and it should be noted that around 80% of low-level controllers in industry are PID based. The book is also useful where conventional PIDs are constrained, such as in industries where long-term delay and non-linearity are present. Here it can be used for the design of controllers for real-time processes. The book is also a valuable teaching and learning resource for undergraduate and postgraduate students.
Publisher: Springer Nature
ISBN: 3030339343
Category : Technology & Engineering
Languages : en
Pages : 267
Book Description
This book presents a detailed study on fractional-order, set-point, weighted PID control strategies and the development of curve-fitting-based approximation techniques for fractional-order parameters. Furthermore, in all the cases, it includes the Scilab-based commands and functions for easy implementation and better understanding, and to appeal to a wide range of readers working with the software. The presented Scilab-based toolbox is the first toolbox for fractional-order systems developed in open-source software. The toolboxes allow time and frequency domains as well as stability analysis of the fractional-order systems and controllers. The book also provides real-time examples of the control of process plants using the developed fractional-order based PID control strategies and the approximation techniques. The book is of interest to readers in the areas of fractional-order controllers, approximation techniques, process modeling, control, and optimization, both in industry and academia. In industry, the book is particularly valuable in the areas of research and development (R&D) as well as areas where PID controllers suffice – and it should be noted that around 80% of low-level controllers in industry are PID based. The book is also useful where conventional PIDs are constrained, such as in industries where long-term delay and non-linearity are present. Here it can be used for the design of controllers for real-time processes. The book is also a valuable teaching and learning resource for undergraduate and postgraduate students.