Widely Tunable Single Mode Quantum Cascade Laser

Widely Tunable Single Mode Quantum Cascade Laser PDF Author: Johanna Wolf
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Widely Tunable Single Mode Quantum Cascade Laser

Widely Tunable Single Mode Quantum Cascade Laser PDF Author: Johanna Wolf
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Madame de Motteville

Madame de Motteville PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 625

Get Book Here

Book Description


Recent Results in Quantum Cascade Lasers and Applications

Recent Results in Quantum Cascade Lasers and Applications PDF Author: Claire Gmachi
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
Recent advances in quantum cascade (QC) lasers include widely tunable single-mode distributed feedback (DFB) lasers with high optical power at lamba approximately 4.6 micrometers. and single-mode DFB lasers at lamba approximately 16 micrometers based on new surface plasmons waveguides with dual-metal gratings. Single-mode and tunable QC-DFB lasers have successfully been used in many collaborations for various trace-gas sensing applications. Examples are the detection of stratospheric methane and nitrous oxide, the sub-ppbv detection of ammonia by cavity ring down spectroscopy, methane concentration and isotopic composition measurements. and the detection of complex molecules in open air by direct absorption spectroscopy. The versatility of band structure engineering enabled the design and realization of QC-lasers. which operate under both. positive and negative polarity displaying distinct characteristics in each polarity if an asymmetric structure is employed.

Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers

Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers PDF Author: Louise Jumpertz
Publisher: Springer
ISBN: 3319658794
Category : Science
Languages : en
Pages : 152

Get Book Here

Book Description
This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range. Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry–Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic. A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.

Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz)

Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz) PDF Author: Mauro F. Pereira
Publisher: Springer
ISBN: 9401785724
Category : Science
Languages : en
Pages : 201

Get Book Here

Book Description
The reader will find here a timely update on new THz sources and detection schemes as well as concrete applications to the detection of Explosives and CBRN. Included is a method to identify hidden RDX-based explosives (pure and plastic ones) in the frequency domain study by Fourier Transformation, which has been complemented by the demonstration of improvement of the quality of the images captured commercially available THz passive cameras. The presented examples show large potential for the detection of small hidden objects at long distances (6-10 m). Complementing the results in the short-wavelength range, laser spectroscopy with a mid-infrared, room temperature, continuous wave, DFB laser diode and high performance DFB QCL have been demonstrated to offer excellent enabling sensor technologies for environmental monitoring, medical diagnostics, industrial and security applications. From the new source point of view a number of systems have been presented - From superconductors to semiconductors, e.g. Detection of Terahertz Waves from Superconducting Bi2Sr2CaCu2O8+δ Intrinsic Josephson Junctions. The quest for a compact room temperature THz source and the recent advances in high power mid-IR QCLs lead to the development of a semiconductor THz source based on intracavity difference frequency generation. Furthermore, alternative electrically pumped THz sources based on the high emission efficiency predicted for polaritonic states in the ultra-strong coupling regime led to the demonstration of electroluminescent devices. Finally, antipolaritons in dispersive media were discussed and different aspects of the interaction of THz radiation with biomatter were presented.

Widely Tunable Terahertz Semiconductor Laser Sources

Widely Tunable Terahertz Semiconductor Laser Sources PDF Author: Aiting Jiang
Publisher:
ISBN:
Category :
Languages : en
Pages : 204

Get Book Here

Book Description
Terahertz Quantum Cascade Lasers (THz QCLs) and Terahertz Difference Frequency Generation Quantum Cascade Laser sources (DFG-QCLs) are two types of semiconductor THz radiation sources that are compact and amenable to production in mass quantities. THz QCL can generate over 1W of power under cryogenic temperatures, while THz DFG-QCL can be operated under room temperature over 1mW level output. For either case, widely tunable solution is highly desired for spectroscopy applications. For THz QCLs, operation is still limited to cryogenic temperature and broad tuning is not available. Our experimental study shows that using variable barriers is a viable approach to enhance the design space for THz QCLs. We also propose to tune the spectral output of these devices using an optically projected variable distributed feedback grating. Tuning will be achieved by changing the projected grating period. Preliminary experimental results support the idea but higher pumping light intensity is required for this method to work. For THz DFG-QCLs, very broad tuning in 1-6 THz range has been demonstrated using rotating diffraction grating in an external cavity setup. Similar tuning range can also be achieved in a monolithic configuration. Based on the previous work which demonstrated an electrical monolithic tuner with 580 GHz tuning range, we design and test in this dissertation a linear array of 10 DFG-QCL devices to cover a 2 THz tuning range. An independent gain control scheme is developed to achieve high yield (~100%) of individual device. It is implemented via independent current pumping of two electrically isolated sections. Surface DFB grating and independent current pumping scheme used in our DFG QCLs is found to be useful for mid-IR QCL array sources. We propose a longitudinal integration scheme of multiple grating sections. It enables a single ridge to emit single mode radiation at different wavelengths upon selection. This helps to reduce mid-IR QCL array far field span. We demonstrated single ridge devices that can emit 2 or 3 different wavelengths upon selection.

Quantum Cascade Lasers

Quantum Cascade Lasers PDF Author: Jérôme Faist
Publisher: Oxford University Press
ISBN: 0198528248
Category : Science
Languages : en
Pages : 321

Get Book Here

Book Description
This book describes the physics, fabrication technology, and applications of the quantum cascade laser.

Mid-Infrared and Terahertz Quantum Cascade Lasers

Mid-Infrared and Terahertz Quantum Cascade Lasers PDF Author: Dan Botez
Publisher: Cambridge University Press
ISBN: 1108570607
Category : Technology & Engineering
Languages : en
Pages : 552

Get Book Here

Book Description
Learn how the rapidly expanding area of mid-infrared and terahertz photonics has been revolutionized in this comprehensive overview. State-of-the-art practical applications are supported by real-life examples and expert guidance. Also featuring fundamental theory enabling you to improve performance of both existing and future devices.

Widely Tunable and SI-traceable Frequency-comb-stabilised Mid-infrared Quantum Cascade Laser

Widely Tunable and SI-traceable Frequency-comb-stabilised Mid-infrared Quantum Cascade Laser PDF Author: Dang Bao An Tran
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The thesis consists in developing a high-resolution mid-infrared spectrometer traceable to primary frequency standards and providing a unique combination of resolution, tunability, detection sensitivity and frequency control. A quantum cascade laser (QCL) emitting at 10.3 μm is phase locked to an optical frequency comb stabilized to a remote 1.55 μm ultra-stable reference developed at LNE-SYRTE, monitored against primary frequency standards and transferred to LPL via an active noise compensated fibre link. This results in a 0.1 Hz QCL linewidth, a stability below 10−15 at 1 s and an uncertainty on its absolute frequency below 4 × 10−14. Moreover, the setup allows the QCL to be widely scanned over 1.4 GHz while maintaining the highest stabilities and precision. This QCL was used to carry out saturated absorption spectroscopy of several molecules in a compact multipass cell. We demonstrated statistical uncertaintyon line-center frequencies at the kHz level and sub-10 kHz systematic uncertainty. We have recorded several singular K-doublets and many rovibrational transitions of methanol, in particular weak transitions and weak doublets - unreported so far. Precise parameters modelling trioxaneh ave been determined with only a few tens of rovibrational transitions recorded at unprecedented accuracy. The quadrupole hyperfine structure of an ammonia transition has been resolved for thefirst time. This setup constitutes a key element for the project aiming at the first observation of parity violation in molecules currently held at LPL, and, more generally, for various fields of physics, from atmospheric and interstellar physics to fundamental physics beyond the standard model.

Advances in Spectroscopic Monitoring of the Atmosphere

Advances in Spectroscopic Monitoring of the Atmosphere PDF Author: Weidong Chen
Publisher: Elsevier
ISBN: 0128156899
Category : Science
Languages : en
Pages : 634

Get Book Here

Book Description
Advances in Spectroscopic Monitoring of the Atmosphere provides a comprehensive overview of cutting-edge technologies and monitoring applications. Concepts are illustrated by numerous examples with information on spectroscopic techniques and applications widely distributed throughout the text. This information is important for researchers to gain an overview of recent developments in the field and make informed selections among the most suitable techniques. This volume also provides information that will allow researchers to explore implementing and developing new diagnostic tools or new approaches for trace gas and aerosol sensing themselves. Advances in Spectroscopic Monitoring of the Atmosphere covers advanced and newly emerging spectroscopic techniques for optical metrology of gases and particles in the atmosphere. This book will be a valuable reference for atmospheric scientists, including those whose focus is applying the methods to atmospheric studies, and those who develop instrumentation. It will also serve as a useful introduction to researchers entering the field and provide relevant examples to researchers and students developing and applying optical sensors for a variety of other scientific, technical, and industrial uses. - Overview of new applications including remote sensing by UAV, laser heterodyne radiometry, dual comb spectroscopy, and more - Features in-situ observations and measurements for real-world data - Includes content on leading edge optical sensors