Well-structured Mathematical Logic

Well-structured Mathematical Logic PDF Author: Damon Scott
Publisher:
ISBN: 9781611633689
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0

Get Book Here

Book Description
Well-Structured Mathematical Logic does for logic what Structured Programming did for computation: make large-scale work possible. From the work of George Boole onward, traditional logic was made to look like a form of symbolic algebra. In this work, the logic undergirding conventional mathematics resembles well-structured computer programs. A very important feature of the new system is that it structures the expression of mathematics in much the same way that people already do informally. In this way, the new system is simultaneously machine-parsable and user-friendly, just as Structured Programming is for algorithms. Unlike traditional logic, the new system works with you, not against you, as you use it to structure--and understand--the mathematics you work with on a daily basis. The book provides a complete guide to its subject matter. It presents the major results and theorems one needs to know in order to use the new system effectively. Two chapters provide tutorials for the reader in the new way that symbols move when logical calculations are performed in the well-structured system. Numerous examples and discussions are provided to illustrate the system's many results and features. Well-Structured Mathematical Logic is accessible to anyone who has at least some knowledge of traditional logic to serve as a foundation, and is of interest to all who need a system of pliant, user-friendly mathematical logic to use in their work in mathematics and computer science.

Well-structured Mathematical Logic

Well-structured Mathematical Logic PDF Author: Damon Scott
Publisher:
ISBN: 9781611633689
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0

Get Book Here

Book Description
Well-Structured Mathematical Logic does for logic what Structured Programming did for computation: make large-scale work possible. From the work of George Boole onward, traditional logic was made to look like a form of symbolic algebra. In this work, the logic undergirding conventional mathematics resembles well-structured computer programs. A very important feature of the new system is that it structures the expression of mathematics in much the same way that people already do informally. In this way, the new system is simultaneously machine-parsable and user-friendly, just as Structured Programming is for algorithms. Unlike traditional logic, the new system works with you, not against you, as you use it to structure--and understand--the mathematics you work with on a daily basis. The book provides a complete guide to its subject matter. It presents the major results and theorems one needs to know in order to use the new system effectively. Two chapters provide tutorials for the reader in the new way that symbols move when logical calculations are performed in the well-structured system. Numerous examples and discussions are provided to illustrate the system's many results and features. Well-Structured Mathematical Logic is accessible to anyone who has at least some knowledge of traditional logic to serve as a foundation, and is of interest to all who need a system of pliant, user-friendly mathematical logic to use in their work in mathematics and computer science.

Mathematical Logic

Mathematical Logic PDF Author: Wei Li
Publisher: Springer Science & Business Media
ISBN: 3764399775
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.

A Mathematical Introduction to Logic

A Mathematical Introduction to Logic PDF Author: Herbert B. Enderton
Publisher: Elsevier
ISBN: 0080496466
Category : Computers
Languages : en
Pages : 330

Get Book Here

Book Description
A Mathematical Introduction to Logic

A Friendly Introduction to Mathematical Logic

A Friendly Introduction to Mathematical Logic PDF Author: Christopher C. Leary
Publisher: Lulu.com
ISBN: 1942341075
Category : Computers
Languages : en
Pages : 382

Get Book Here

Book Description
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.

A Logical Foundation for Potentialist Set Theory

A Logical Foundation for Potentialist Set Theory PDF Author: Sharon Berry
Publisher: Cambridge University Press
ISBN: 1108834310
Category : Science
Languages : en
Pages : 249

Get Book Here

Book Description
A new approach to the standard axioms of set theory, relating the theory to the philosophy of science and metametaphysics.

Mathematical Logic

Mathematical Logic PDF Author: Joseph R. Shoenfield
Publisher: CRC Press
ISBN: 135143330X
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.

What Is Mathematical Logic?

What Is Mathematical Logic? PDF Author: J. N. Crossley
Publisher: Courier Corporation
ISBN: 0486151522
Category : Mathematics
Languages : en
Pages : 99

Get Book Here

Book Description
A serious introductory treatment geared toward non-logicians, this survey traces the development of mathematical logic from ancient to modern times and discusses the work of Planck, Einstein, Bohr, Pauli, Heisenberg, Dirac, and others. 1972 edition.

A Concise Introduction to Mathematical Logic

A Concise Introduction to Mathematical Logic PDF Author: Wolfgang Rautenberg
Publisher: Springer Science & Business Media
ISBN: 0387342419
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
While there are already several well known textbooks on mathematical logic this book is unique in treating the material in a concise and streamlined fashion. This allows many important topics to be covered in a one semester course. Although the book is intended for use as a graduate text the first three chapters can be understood by undergraduates interested in mathematical logic. The remaining chapters contain material on logic programming for computer scientists, model theory, recursion theory, Godel’s Incompleteness Theorems, and applications of mathematical logic. Philosophical and foundational problems of mathematics are discussed throughout the text.

How to Prove It

How to Prove It PDF Author: Daniel J. Velleman
Publisher: Cambridge University Press
ISBN: 0521861241
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

An Introduction to Mathematical Logic

An Introduction to Mathematical Logic PDF Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.