Author: M. Ainsworth
Publisher: Oxford University Press
ISBN: 9780198501909
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book contains the Proceedings of the seventh EPSRC Numerical Analysis Summer School, held in 1996. Five major topics in numerical analysis are treated by world experts at a level which should be suitable for first year graduate students and experienced researchers alike, assuming onlythe knowledge acquired from a first degree in mathematics or in a scientific discipline with significant mathematical content. Often researchers need to obtain an up-to-date picture of work in an area with a substantial literature, either to avoid reproducing work which is already done, or to applyto their own research in a different subject. This book avoids the need to trawl through the literature by presenting important recent results together with references to all the main papers. Each contributor reviews the state of the art in his area, presenting new and often hitherto unpublishedmaterial.
Wavelets, Multilevel Methods, and Elliptic PDEs
Author: M. Ainsworth
Publisher: Oxford University Press
ISBN: 9780198501909
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book contains the Proceedings of the seventh EPSRC Numerical Analysis Summer School, held in 1996. Five major topics in numerical analysis are treated by world experts at a level which should be suitable for first year graduate students and experienced researchers alike, assuming onlythe knowledge acquired from a first degree in mathematics or in a scientific discipline with significant mathematical content. Often researchers need to obtain an up-to-date picture of work in an area with a substantial literature, either to avoid reproducing work which is already done, or to applyto their own research in a different subject. This book avoids the need to trawl through the literature by presenting important recent results together with references to all the main papers. Each contributor reviews the state of the art in his area, presenting new and often hitherto unpublishedmaterial.
Publisher: Oxford University Press
ISBN: 9780198501909
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book contains the Proceedings of the seventh EPSRC Numerical Analysis Summer School, held in 1996. Five major topics in numerical analysis are treated by world experts at a level which should be suitable for first year graduate students and experienced researchers alike, assuming onlythe knowledge acquired from a first degree in mathematics or in a scientific discipline with significant mathematical content. Often researchers need to obtain an up-to-date picture of work in an area with a substantial literature, either to avoid reproducing work which is already done, or to applyto their own research in a different subject. This book avoids the need to trawl through the literature by presenting important recent results together with references to all the main papers. Each contributor reviews the state of the art in his area, presenting new and often hitherto unpublishedmaterial.
Wavelet Methods for Elliptic Partial Differential Equations
Author: Karsten Urban
Publisher: Numerical Mathematics and Scie
ISBN: 0198526059
Category : Mathematics
Languages : en
Pages : 509
Book Description
Wavelet methods are by now a well-known tool in image processing (jpeg2000). These functions have been used successfully in other areas, however. Elliptic Partial Differential Equations which model several processes in, for example, science and engineering, is one such field. This book, based on the author's course, gives an introduction to wavelet methods in general and then describes their application for the numerical solution of elliptic partial differential equations. Recently developed adaptive methods are also covered and each scheme is complemented with numerical results , exercises, and corresponding software.
Publisher: Numerical Mathematics and Scie
ISBN: 0198526059
Category : Mathematics
Languages : en
Pages : 509
Book Description
Wavelet methods are by now a well-known tool in image processing (jpeg2000). These functions have been used successfully in other areas, however. Elliptic Partial Differential Equations which model several processes in, for example, science and engineering, is one such field. This book, based on the author's course, gives an introduction to wavelet methods in general and then describes their application for the numerical solution of elliptic partial differential equations. Recently developed adaptive methods are also covered and each scheme is complemented with numerical results , exercises, and corresponding software.
Multiscale Wavelet Methods for Partial Differential Equations
Author: Wolfgang Dahmen
Publisher: Elsevier
ISBN: 0080537146
Category : Mathematics
Languages : en
Pages : 587
Book Description
This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. - Covers important areas of computational mechanics such as elasticity and computational fluid dynamics - Includes a clear study of turbulence modeling - Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations - Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications
Publisher: Elsevier
ISBN: 0080537146
Category : Mathematics
Languages : en
Pages : 587
Book Description
This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. - Covers important areas of computational mechanics such as elasticity and computational fluid dynamics - Includes a clear study of turbulence modeling - Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations - Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications
Fundamentals of Wavelets
Author: Jaideva C. Goswami
Publisher: John Wiley & Sons
ISBN: 0470934646
Category : Computers
Languages : en
Pages : 310
Book Description
Most existing books on wavelets are either too mathematical or they focus on too narrow a specialty. This book provides a thorough treatment of the subject from an engineering point of view. It is a one-stop source of theory, algorithms, applications, and computer codes related to wavelets. This second edition has been updated by the addition of: a section on "Other Wavelets" that describes curvelets, ridgelets, lifting wavelets, etc a section on lifting algorithms Sections on Edge Detection and Geophysical Applications Section on Multiresolution Time Domain Method (MRTD) and on Inverse problems
Publisher: John Wiley & Sons
ISBN: 0470934646
Category : Computers
Languages : en
Pages : 310
Book Description
Most existing books on wavelets are either too mathematical or they focus on too narrow a specialty. This book provides a thorough treatment of the subject from an engineering point of view. It is a one-stop source of theory, algorithms, applications, and computer codes related to wavelets. This second edition has been updated by the addition of: a section on "Other Wavelets" that describes curvelets, ridgelets, lifting wavelets, etc a section on lifting algorithms Sections on Edge Detection and Geophysical Applications Section on Multiresolution Time Domain Method (MRTD) and on Inverse problems
The Lattice Boltzmann Equation
Author: S. Succi
Publisher: Oxford University Press
ISBN: 9780198503989
Category : Mathematics
Languages : en
Pages : 308
Book Description
Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.
Publisher: Oxford University Press
ISBN: 9780198503989
Category : Mathematics
Languages : en
Pages : 308
Book Description
Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.
Inverse Eigenvalue Problems
Author: Moody Chu
Publisher: Oxford University Press
ISBN: 0198566646
Category : Mathematics
Languages : en
Pages : 408
Book Description
Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.
Publisher: Oxford University Press
ISBN: 0198566646
Category : Mathematics
Languages : en
Pages : 408
Book Description
Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.
Numerical Linear Algebra
Author: Holger Wendland
Publisher: Cambridge University Press
ISBN: 1108548636
Category : Computers
Languages : en
Pages : 420
Book Description
This self-contained introduction to numerical linear algebra provides a comprehensive, yet concise, overview of the subject. It includes standard material such as direct methods for solving linear systems and least-squares problems, error, stability and conditioning, basic iterative methods and the calculation of eigenvalues. Later chapters cover more advanced material, such as Krylov subspace methods, multigrid methods, domain decomposition methods, multipole expansions, hierarchical matrices and compressed sensing. The book provides rigorous mathematical proofs throughout, and gives algorithms in general-purpose language-independent form. Requiring only a solid knowledge in linear algebra and basic analysis, this book will be useful for applied mathematicians, engineers, computer scientists, and all those interested in efficiently solving linear problems.
Publisher: Cambridge University Press
ISBN: 1108548636
Category : Computers
Languages : en
Pages : 420
Book Description
This self-contained introduction to numerical linear algebra provides a comprehensive, yet concise, overview of the subject. It includes standard material such as direct methods for solving linear systems and least-squares problems, error, stability and conditioning, basic iterative methods and the calculation of eigenvalues. Later chapters cover more advanced material, such as Krylov subspace methods, multigrid methods, domain decomposition methods, multipole expansions, hierarchical matrices and compressed sensing. The book provides rigorous mathematical proofs throughout, and gives algorithms in general-purpose language-independent form. Requiring only a solid knowledge in linear algebra and basic analysis, this book will be useful for applied mathematicians, engineers, computer scientists, and all those interested in efficiently solving linear problems.
Numerical Recipes with Source Code CD-ROM 3rd Edition
Author: William H. Press
Publisher: Cambridge University Press
ISBN: 9780521884075
Category : Mathematics
Languages : en
Pages : 1272
Book Description
The complete Numerical Recipes 3rd edition book/CD bundle, with a hundred new routines, two new chapters and much more.
Publisher: Cambridge University Press
ISBN: 9780521884075
Category : Mathematics
Languages : en
Pages : 1272
Book Description
The complete Numerical Recipes 3rd edition book/CD bundle, with a hundred new routines, two new chapters and much more.
Numerical Recipes 3rd Edition
Author: William H. Press
Publisher: Cambridge University Press
ISBN: 0521880688
Category : Computers
Languages : en
Pages : 1195
Book Description
Do you want easy access to the latest methods in scientific computing? This greatly expanded third edition of Numerical Recipes has it, with wider coverage than ever before, many new, expanded and updated sections, and two completely new chapters. The executable C++ code, now printed in colour for easy reading, adopts an object-oriented style particularly suited to scientific applications. Co-authored by four leading scientists from academia and industry, Numerical Recipes starts with basic mathematics and computer science and proceeds to complete, working routines. The whole book is presented in the informal, easy-to-read style that made earlier editions so popular. Highlights of the new material include: a new chapter on classification and inference, Gaussian mixture models, HMMs, hierarchical clustering, and SVMs; a new chapter on computational geometry, covering KD trees, quad- and octrees, Delaunay triangulation, and algorithms for lines, polygons, triangles, and spheres; interior point methods for linear programming; MCMC; an expanded treatment of ODEs with completely new routines; and many new statistical distributions. For support, or to subscribe to an online version, please visit www.nr.com.
Publisher: Cambridge University Press
ISBN: 0521880688
Category : Computers
Languages : en
Pages : 1195
Book Description
Do you want easy access to the latest methods in scientific computing? This greatly expanded third edition of Numerical Recipes has it, with wider coverage than ever before, many new, expanded and updated sections, and two completely new chapters. The executable C++ code, now printed in colour for easy reading, adopts an object-oriented style particularly suited to scientific applications. Co-authored by four leading scientists from academia and industry, Numerical Recipes starts with basic mathematics and computer science and proceeds to complete, working routines. The whole book is presented in the informal, easy-to-read style that made earlier editions so popular. Highlights of the new material include: a new chapter on classification and inference, Gaussian mixture models, HMMs, hierarchical clustering, and SVMs; a new chapter on computational geometry, covering KD trees, quad- and octrees, Delaunay triangulation, and algorithms for lines, polygons, triangles, and spheres; interior point methods for linear programming; MCMC; an expanded treatment of ODEs with completely new routines; and many new statistical distributions. For support, or to subscribe to an online version, please visit www.nr.com.
Shapes and Diffeomorphisms
Author: Laurent Younes
Publisher: Springer
ISBN: 3662584964
Category : Mathematics
Languages : en
Pages : 570
Book Description
This book covers mathematical foundations and methods for the computerized analysis of shapes, providing the requisite background in geometry and functional analysis and introducing various algorithms and approaches to shape modeling, with a special focus on the interesting connections between shapes and their transformations by diffeomorphisms. A direct application is to computational anatomy, for which techniques such as large‒deformation diffeomorphic metric mapping and metamorphosis, among others, are presented. The appendices detail a series of classical topics (Hilbert spaces, differential equations, Riemannian manifolds, optimal control). The intended audience is applied mathematicians and mathematically inclined engineers interested in the topic of shape analysis and its possible applications in computer vision or medical imaging. The first part can be used for an advanced undergraduate course on differential geometry with a focus on applications while the later chapters are suitable for a graduate course on shape analysis through the action of diffeomorphisms. Several significant additions appear in the 2nd edition, most notably a new chapter on shape datasets, and a discussion of optimal control theory in an infinite-dimensional framework, which is then used to enrich the presentation of diffeomorphic matching.
Publisher: Springer
ISBN: 3662584964
Category : Mathematics
Languages : en
Pages : 570
Book Description
This book covers mathematical foundations and methods for the computerized analysis of shapes, providing the requisite background in geometry and functional analysis and introducing various algorithms and approaches to shape modeling, with a special focus on the interesting connections between shapes and their transformations by diffeomorphisms. A direct application is to computational anatomy, for which techniques such as large‒deformation diffeomorphic metric mapping and metamorphosis, among others, are presented. The appendices detail a series of classical topics (Hilbert spaces, differential equations, Riemannian manifolds, optimal control). The intended audience is applied mathematicians and mathematically inclined engineers interested in the topic of shape analysis and its possible applications in computer vision or medical imaging. The first part can be used for an advanced undergraduate course on differential geometry with a focus on applications while the later chapters are suitable for a graduate course on shape analysis through the action of diffeomorphisms. Several significant additions appear in the 2nd edition, most notably a new chapter on shape datasets, and a discussion of optimal control theory in an infinite-dimensional framework, which is then used to enrich the presentation of diffeomorphic matching.