Author: Peter Müller
Publisher: Springer Science & Business Media
ISBN: 1461205670
Category : Mathematics
Languages : en
Pages : 406
Book Description
This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.
Bayesian Inference in Wavelet-Based Models
Author: Peter Müller
Publisher: Springer Science & Business Media
ISBN: 1461205670
Category : Mathematics
Languages : en
Pages : 406
Book Description
This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.
Publisher: Springer Science & Business Media
ISBN: 1461205670
Category : Mathematics
Languages : en
Pages : 406
Book Description
This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.
Wavelet Shrinkage with Affine Bayes Rules with Applications
Author: Peter Müller
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 20
Book Description
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 20
Book Description
Wavelets in Functional Data Analysis
Author: Pedro A. Morettin
Publisher: Springer
ISBN: 3319596233
Category : Mathematics
Languages : en
Pages : 112
Book Description
Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.
Publisher: Springer
ISBN: 3319596233
Category : Mathematics
Languages : en
Pages : 112
Book Description
Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.
Practical Nonparametric and Semiparametric Bayesian Statistics
Author: Dipak D. Dey
Publisher: Springer Science & Business Media
ISBN: 1461217326
Category : Mathematics
Languages : en
Pages : 376
Book Description
A compilation of original articles by Bayesian experts, this volume presents perspectives on recent developments on nonparametric and semiparametric methods in Bayesian statistics. The articles discuss how to conceptualize and develop Bayesian models using rich classes of nonparametric and semiparametric methods, how to use modern computational tools to summarize inferences, and how to apply these methodologies through the analysis of case studies.
Publisher: Springer Science & Business Media
ISBN: 1461217326
Category : Mathematics
Languages : en
Pages : 376
Book Description
A compilation of original articles by Bayesian experts, this volume presents perspectives on recent developments on nonparametric and semiparametric methods in Bayesian statistics. The articles discuss how to conceptualize and develop Bayesian models using rich classes of nonparametric and semiparametric methods, how to use modern computational tools to summarize inferences, and how to apply these methodologies through the analysis of case studies.
Multiscale Modeling
Author: Marco A.R. Ferreira
Publisher: Springer Science & Business Media
ISBN: 0387708987
Category : Mathematics
Languages : en
Pages : 243
Book Description
This highly useful book contains methodology for the analysis of data that arise from multiscale processes. It brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. These methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.
Publisher: Springer Science & Business Media
ISBN: 0387708987
Category : Mathematics
Languages : en
Pages : 243
Book Description
This highly useful book contains methodology for the analysis of data that arise from multiscale processes. It brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. These methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.
Proceedings of the Section on Bayesian Statistical Science
Author: American Statistical Association. Section on Bayesian Statistical Science
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 670
Book Description
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 670
Book Description
Technometrics
Author:
Publisher:
ISBN:
Category : Experimental design
Languages : en
Pages : 496
Book Description
Publisher:
ISBN:
Category : Experimental design
Languages : en
Pages : 496
Book Description
Proceedings
Author:
Publisher:
ISBN:
Category : Image processing
Languages : en
Pages : 542
Book Description
Publisher:
ISBN:
Category : Image processing
Languages : en
Pages : 542
Book Description
Resenhas IME-USP
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 514
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 514
Book Description
Computational Statistics & Data Analysis
Author:
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 628
Book Description
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 628
Book Description