Wave Propagation in Dissipative Or Dispersive Nonlinear Media

Wave Propagation in Dissipative Or Dispersive Nonlinear Media PDF Author: Mevlüt Teymur
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 182

Get Book

Book Description

Wave Propagation in Dissipative Or Dispersive Nonlinear Media

Wave Propagation in Dissipative Or Dispersive Nonlinear Media PDF Author: Mevlüt Teymur
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 182

Get Book

Book Description


Methods of Wave Theory in Dispersive Media

Methods of Wave Theory in Dispersive Media PDF Author: Mikhail Viktorovich Kuzelev
Publisher: World Scientific
ISBN: 981426170X
Category : Science
Languages : en
Pages : 271

Get Book

Book Description
Ch. 1. Linear harmonic waves in dispersive systems. Initial-value problem and problem with an external source. 1. Harmonic waves in dispersive systems. 2. Initial-value problem. Eigenmode method. 3. Characteristic function of the state vector. Dispersion operator. 4. Laplace transform method -- ch. 2. A case study of linear waves in dispersive media. 5. Transverse electromagnetic waves in an isotropic dielectric. 6. Longitudinal electrostatic waves in a cold isotropic plasma. Collisional dissipation of plasma waves. 7. Transverse electromagnetic waves in a cold isotropic plasma. Dissipation of transverse waves in a plasma. 8. Electromagnetic waves in metals. 9. Electromagnetic waves in a waveguide with an isotropic dielectric. 10. Longitudinal waves in a hot isotropic plasma. Electron diffusion in a plasma. 11. Longitudinal waves in an isotropic degenerate plasma. Waves in a quantum plasma. 12. Ion acoustic waves in a nonisothermal plasma. Ambipolar diffusion. 13. Electromagnetic waves in a waveguide with an anisotropic plasma in a strong external magnetic field. 14. Electromagnetic waves propagating in a magnetized electron plasma along a magnetic field. 15. Electrostatic waves propagating in a magnetized electron plasma at an angle to a magnetic field. 16. Magnetohydrodynamic waves in a conducting fluid. 17. Acoustic waves in crystals. 18. Longitudinal electrostatic waves in a one-dimensional electron beam. 19. Beam instability in a plasma. 20. Instability of a current-carrying plasma -- ch. 3. Linear waves in coupled media. Slow amplitude method. 21. Coupled oscillator representation and slow amplitude method. 22. Beam-plasma system in the coupled oscillator representation. 23. Basic equations of microwave electronics. 24. Resonant Buneman instability in a current-carrying plasma in the coupled oscillator representation. 25. Dispersion function and wave absorption in dissipative systems. 26. Some effects in the interaction between waves in coupled systems. 27. Waves and their interaction in periodic structures -- ch. 4. Nonharmonic waves in dispersive media. 28. General solution to the initial-value problem. 29. Quasi-harmonic approximation. Group velocity. 30. Pulse spreading in equilibrium dispersive media. 31. Stationary-phase method. 32. Some problems for wave equations with a source -- ch. 5. Nonharmonic waves in nonequilibrium media. 33. Pulse propagation in nonequilibrium media. 34. Stationary-phase method for complex frequencies. 35. Quasi-harmonic approximation in the theory of interaction of electron beams with slowing-down media -- ch. 6. Theory of instabilities. 36. Convective and absolute instabilities. First criterion for the type of instability. 37. Saddle-point method. Second criterion for the type of instability. 38. Third Criterion for the type of instability. 39. Type of beam instability in the interaction with a slowed wave of zero group velocity in a medium. 40. Calculation of the Green's functions of unstable systems -- ch. 7. Hamiltonian method in the theory of electromagnetic radiation in dispersive media. 41. Equations for the excitation of transverse electromagnetic field oscillators. 42. Dipole radiation. 43. Radiation from a moving dipole - undulator radiation. 44. Cyclotron radiation. 45. Cherenkov effect. Anomalous and normal doppler effects. 46. Application of the Hamiltonian method to the problem of the excitation of longitudinal waves

Linear And Nonlinear Wave Propagation

Linear And Nonlinear Wave Propagation PDF Author: Spencer P Kuo
Publisher: World Scientific
ISBN: 9811231656
Category : Science
Languages : en
Pages : 206

Get Book

Book Description
Waves are essential phenomena in most scientific and engineering disciplines, such as electromagnetism and optics, and different mechanics including fluid, solid, structural, quantum, etc. They appear in linear and nonlinear systems. Some can be observed directly and others are not. The features of the waves are usually described by solutions to either linear or nonlinear partial differential equations, which are fundamental to the students and researchers.Generic equations, describing wave and pulse propagation in linear and nonlinear systems, are introduced and analyzed as initial/boundary value problems. These systems cover the general properties of non-dispersive and dispersive, uniform and non-uniform, with/without dissipations. Methods of analyses are introduced and illustrated with analytical solutions. Wave-wave and wave-particle interactions ascribed to the nonlinearity of media (such as plasma) are discussed in the final chapter.This interdisciplinary textbook is essential reading for anyone in above mentioned disciplines. It was prepared to provide students with an understanding of waves and methods of solving wave propagation problems. The presentation is self-contained and should be read without difficulty by those who have adequate preparation in classic mechanics. The selection of topics and the focus given to each provide essential materials for a lecturer to cover the bases in a linear/nonlinear wave course.

Oscillations and Waves

Oscillations and Waves PDF Author: M.I Rabinovich
Publisher: Springer Science & Business Media
ISBN: 9400910339
Category : Mathematics
Languages : en
Pages : 586

Get Book

Book Description
'Et mai - ... - si j'avait su comment en revenir. One service mathematics has rendered the je n'y semis point aUe.' human race. It has put common sense back Jules Verne where it belongs, on the topmost sheJf next to the dusty canister Iabclled 'discarded non· The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Selected Topics in Nonlinear Wave Mechanics

Selected Topics in Nonlinear Wave Mechanics PDF Author: C.I. Christov
Publisher: Springer Science & Business Media
ISBN: 1461200954
Category : Mathematics
Languages : en
Pages : 274

Get Book

Book Description
This book gives an overview ofthe current state of nonlinear wave mechanics with emphasis on strong discontinuities (shock waves) and localized self preserving shapes (solitons) in both elastic and fluid media. The exposition is intentionallyat a detailed mathematical and physical level, our expectation being that the reader will enjoy coming to grips in a concrete manner with advances in this fascinating subject. Historically, modern research in nonlinear wave mechanics began with the famous 1858 piston problem paper of Riemann on shock waves and con tinued into the early part of the last century with the work of Hadamard, Rankine, and Hugoniot. After WWII, research into nonlinear propagation of dispersive waves rapidly accelerated with the advent of computers. Works of particular importance in the immediate post-war years include those of von Neumann, Fermi, and Lax. Later, additional contributions were made by Lighthill, Glimm, Strauss, Wendroff, and Bishop. Dispersion alone leads to shock fronts of the propagating waves. That the nonlinearity can com pensate for the dispersion, leading to propagation with a stable wave having constant velocity and shape (solitons) came as a surprise. A solitary wave was first discussed by J. Scott Russell in 1845 in "Report of British Asso ciations for the Advancement of Science. " He had, while horseback riding, observed a solitary wave travelling along a water channel and followed its unbroken progress for over a mile.

Nonlinear Waves in Active Media

Nonlinear Waves in Active Media PDF Author: Jüri Engelbrecht
Publisher: Springer Science & Business Media
ISBN: 3642747892
Category : Science
Languages : en
Pages : 284

Get Book

Book Description
TIlis volume contains the contributions to the Euromech Colloquium No. 241 on Nonlinear Waves in Active Media at the Institute of Cybernetics of the Estonian Academy of Sciences, Tallinn, Estonia, USSR, September 27-30, 1988. The Co-chairmen of the Euromech Colloquium felt that it would be a good service to the community to publish these proceedings. First, the topic itself dealing with various wave processes with energy influx is extremely interesting and attracted a much larger number of participants than usual - a clear sign of its importance to the scientific community. Second, Euromech No. 241 was actually the first Euromech Colloquium held in the Soviet Union and could thus be viewed as a milestone in the extending scientific contacts between East and West. At the colloquium 50 researchers working in very different branches of sci ence met to lecture on their results and to discuss problems of common interest. An introductory paper by I. Engelbrecht presents the common motivation and background of the topics covered. Altogether 36 speakers presented their lectures, of which 30 are gathered here. The remaining six papers which will appear elsewhere are listed on page X. In addition, three contributions by authors who could not attend the colloquium are included. The two lectures given by A.S. Mikhailov, V.S. Davydov and V.S. Zykov are here published as one long paper.

Ray Methods for Nonlinear Waves in Fluids and Plasmas

Ray Methods for Nonlinear Waves in Fluids and Plasmas PDF Author: Marcelo Anile
Publisher: CRC Press
ISBN: 1000447588
Category : Mathematics
Languages : en
Pages : 268

Get Book

Book Description
Presents in a systematic and unified manner the ray method, in its various forms, for studying nonlinear wave propagation in situations of physical interest, essentially fluid dynamics and plasma physics.

The Topology of 4-Manifolds

The Topology of 4-Manifolds PDF Author: Robion C. Kirby
Publisher: Springer
ISBN: 354046171X
Category : Mathematics
Languages : en
Pages : 114

Get Book

Book Description
This book presents the classical theorems about simply connected smooth 4-manifolds: intersection forms and homotopy type, oriented and spin bordism, the index theorem, Wall's diffeomorphisms and h-cobordism, and Rohlin's theorem. Most of the proofs are new or are returbishings of post proofs; all are geometric and make us of handlebody theory. There is a new proof of Rohlin's theorem using spin structures. There is an introduction to Casson handles and Freedman's work including a chapter of unpublished proofs on exotic R4's. The reader needs an understanding of smooth manifolds and characteristic classes in low dimensions. The book should be useful to beginning researchers in 4-manifolds.

Wave Propagation in Linear and Nonlinear Periodic Media

Wave Propagation in Linear and Nonlinear Periodic Media PDF Author: Francesco Romeo
Publisher: Springer Science & Business Media
ISBN: 3709113091
Category : Technology & Engineering
Languages : en
Pages : 332

Get Book

Book Description
Waves and defect modes in structures media.- Piezoelectric superlattices and shunted periodic arrays as tunable periodic structures and metamaterials.- Topology optimization.- Map-based approaches for periodic structures.- Methodologies for nonlinear periodic media.​ The contributions in this volume present both the theoretical background and an overview of the state-of-the art in wave propagation in linear and nonlinear periodic media in a consistent format. They combine the material issued from a variety of engineering applications, spanning a wide range of length scale, characterized by structures and materials, both man-made and naturally occurring, featuring geometry, micro-structural and/or materials properties that vary periodically in space, including periodically stiffened plates, shells and beam-like as well as bladed disc assemblies, phononic metamaterials, photonic crystals and ordered granular media. Along with linear models and applications, analytical methodologies for analyzing and exploiting complex dynamical phenomena arising in nonlinear periodic systems are also presented.​

Wave Processes in Solids with Microstructure

Wave Processes in Solids with Microstructure PDF Author: Vladimir I. Erofeyev
Publisher: World Scientific
ISBN: 9789812794505
Category : Science
Languages : en
Pages : 282

Get Book

Book Description
1. The fundamental hypothesis of microstructured elastic solids. Structural-phenomenological model. 1.1. Mathematical models of solids with microstructure. 1.2. Definition of material constants -- 2. Gradient elasticity media. Dispersion. Dissipation. Non-linearity. 2.1. Dynamic equations. Energy and momentum variation law. 2.2. Dispersion properties of longitudinal and shear waves. Surface Rayleigh waves. 2.3. Dissipative properties. 2.4. Nonlinear plain stationary waves. 2.5. Quasi-plain wave beams. 2.6. Self-modulation of quasi-harmonic shear waves. 2.7. Resonant interaction of quasi-harmonic waves. 2.8. Noise waves -- 3. Gradient elasticity media. Damaged medium. Magnetoelasticity. 3.1. Waves in damaged medium with microstructure. 3.2. Magneto-elastic waves in the medium with microstructure -- 4. Cosserat continuum. 4.1. Basic equations of micropolar elasticity theory. 4.2. Dispersion properties of volume waves. 4.3. Wave reflection from the free interface of micropolar halfspace. Rayleigh surface waves. 4.4. Normal waves in a micropolar layer. 4.5. Nonlinear resonant interaction of longitudinal and rotation waves. 4.6. Waves in Cosserat pseudocontinuum. 4.7. Waves in the Cosserat continuum with symmetric stress tensor -- 5. Waves in two-component mixture of solids. 5.1. Dispersion properties. 5.2. Some nonlinear wave effects -- 6. Waves in micromorphic solids. 6.1. Dynamics equations. 6.2. Different types of volume waves and their dispersion properties. 6.3. Surface shear waves in the gradient-elastic half-space with surface energy -- 7. Elasto-plastic waves in the medium with dislocations. 7.1. Equations of dynamics. 7.2. Dispersion properties. 7.3. Some nonlinear problems. 7.4. Correlation of elasto-plastic continuum and Cosserat continuum. 7.5. Example of research of the influence of dislocations on dispersion and damping of ultrasound in solid body -- 8. Wave problems of micropolar hydrodynamics. 8.1. Rotational waves in micropolar liquids. 8.2. Shear surface wave at the interface of elastic body and micropolar liquid. 8.3. Shear surface wave at the interface between elastic half-space and conducting viscous liquid in a magnetic field.