Author: M. W. Dingemans
Publisher: World Scientific
ISBN: 9810204272
Category : Technology & Engineering
Languages : en
Pages : 1015
Book Description
The primary objective of this book is to provide a review of techniques available for the problems of wave propagation in regions with uneven beds as they are encountered in coastal areas. The view taken is that the techniques should be useful for application in advisory practice. However, effort is put into a precise definition of the underlying physical principles, so that the validity of the methods used can be evaluated. Both linear and nonlinear wave propagation techniques are discussed. Because of its length, the book comes in two parts, part 1 covering primarily linear wave propagation, and part 2 covering on nonlinear wave propagation.
Water Wave Propagation Over Uneven Bottoms
Author: Maarten W. Dingemans
Publisher:
ISBN: 9789810204273
Category :
Languages : en
Pages : 471
Book Description
Publisher:
ISBN: 9789810204273
Category :
Languages : en
Pages : 471
Book Description
Water Wave Propagation Over Uneven Bottoms
Author: M. W. Dingemans
Publisher: World Scientific
ISBN: 9810204272
Category : Technology & Engineering
Languages : en
Pages : 1015
Book Description
The primary objective of this book is to provide a review of techniques available for the problems of wave propagation in regions with uneven beds as they are encountered in coastal areas. The view taken is that the techniques should be useful for application in advisory practice. However, effort is put into a precise definition of the underlying physical principles, so that the validity of the methods used can be evaluated. Both linear and nonlinear wave propagation techniques are discussed. Because of its length, the book comes in two parts, part 1 covering primarily linear wave propagation, and part 2 covering on nonlinear wave propagation.
Publisher: World Scientific
ISBN: 9810204272
Category : Technology & Engineering
Languages : en
Pages : 1015
Book Description
The primary objective of this book is to provide a review of techniques available for the problems of wave propagation in regions with uneven beds as they are encountered in coastal areas. The view taken is that the techniques should be useful for application in advisory practice. However, effort is put into a precise definition of the underlying physical principles, so that the validity of the methods used can be evaluated. Both linear and nonlinear wave propagation techniques are discussed. Because of its length, the book comes in two parts, part 1 covering primarily linear wave propagation, and part 2 covering on nonlinear wave propagation.
Water Wave Propagation Over Uneven Bottoms: Linear wave propagation
Author: Maarten W. Dingemans
Publisher: World Scientific
ISBN: 9789810239947
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Publisher: World Scientific
ISBN: 9789810239947
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Non-linear Wave Propagation
Author:
Publisher:
ISBN: 9789810239954
Category :
Languages : en
Pages : 17
Book Description
Publisher:
ISBN: 9789810239954
Category :
Languages : en
Pages : 17
Book Description
Water Wave Propagation Over Uneven Bottoms (In 2 Parts)
Author: Maarten W Dingemans
Publisher: World Scientific
ISBN: 9814506583
Category : Technology & Engineering
Languages : en
Pages : 1015
Book Description
The primary objective of this book is to provide a review of techniques available for the problems of wave propagation in regions with uneven beds as they are encountered in coastal areas. The view taken is that the techniques should be useful for application in advisory practice. However, effort is put into a precise definition of the underlying physical principles, so that the validity of the methods used can be evaluated. Both linear and nonlinear wave propagation techniques are discussed. Because of its length, the book comes in two parts: Part 1 covers primarily linear wave propagation, and Part 2 covers nonlinear wave propagation.
Publisher: World Scientific
ISBN: 9814506583
Category : Technology & Engineering
Languages : en
Pages : 1015
Book Description
The primary objective of this book is to provide a review of techniques available for the problems of wave propagation in regions with uneven beds as they are encountered in coastal areas. The view taken is that the techniques should be useful for application in advisory practice. However, effort is put into a precise definition of the underlying physical principles, so that the validity of the methods used can be evaluated. Both linear and nonlinear wave propagation techniques are discussed. Because of its length, the book comes in two parts: Part 1 covers primarily linear wave propagation, and Part 2 covers nonlinear wave propagation.
Water Wave Propagation Over Uneven Bottoms
Author: James Thornton Kirby
Publisher:
ISBN:
Category : Diffraction
Languages : en
Pages : 102
Book Description
In Part I of this report, a time dependent form of the reduced wave equation of Berkhoff is developed for the case of water waves propagating over a bed consisting of ripples superimposed on an otherwise slowly varying mean depth which satisfies the mild slope assumption. The ripples are assumed to have wavelengths on the order of the surface wave length but amplitudes which scale as a small parameter along with the bottom slope. The theory is verified by showing that it reduces to the case of plane waves propagating over a non-dimensional, infinite patch of sinusoidal ripples, studied recently by Davis and Heathershaw and Mei. We then study two cases of interest--formulation and use of the coupled parabolic equations for propagation over patches of arbitrary form in order to study wave reflection, and propagation of trapped waves along an infinite ripple patch. In the second part, we use the results of Part 1 to extend the results for weakly-nonlinear wave propagation to the case of partial reflection from bottoms with mild-sloping mean depth with superposed small amplitude undulations. Keywords include: Combined refraction-diffraction, Linear Surface Waves, Shallow and intermediate water depths, and Wave reflection.
Publisher:
ISBN:
Category : Diffraction
Languages : en
Pages : 102
Book Description
In Part I of this report, a time dependent form of the reduced wave equation of Berkhoff is developed for the case of water waves propagating over a bed consisting of ripples superimposed on an otherwise slowly varying mean depth which satisfies the mild slope assumption. The ripples are assumed to have wavelengths on the order of the surface wave length but amplitudes which scale as a small parameter along with the bottom slope. The theory is verified by showing that it reduces to the case of plane waves propagating over a non-dimensional, infinite patch of sinusoidal ripples, studied recently by Davis and Heathershaw and Mei. We then study two cases of interest--formulation and use of the coupled parabolic equations for propagation over patches of arbitrary form in order to study wave reflection, and propagation of trapped waves along an infinite ripple patch. In the second part, we use the results of Part 1 to extend the results for weakly-nonlinear wave propagation to the case of partial reflection from bottoms with mild-sloping mean depth with superposed small amplitude undulations. Keywords include: Combined refraction-diffraction, Linear Surface Waves, Shallow and intermediate water depths, and Wave reflection.
Advances In Coastal And Ocean Engineering, Vol 4
Author: Philip L-f Liu
Publisher: World Scientific
ISBN: 9814496723
Category : Technology & Engineering
Languages : en
Pages : 263
Book Description
This volume consists of five excellent review papers. In the first paper, “A Review of Coastal Wave Modeling: The Physical and Mathematical Problems”, N E Huang presents a summary of the state-of-the-art of wave modeling in deep waters. He points out several shortcomings in existing modeling approaches and expresses the urgent need for developing a statistical theory of surface waves in shallow waters. Huang believes that the statistical theory can be formulated as the soliton turbulence. He also points out other important issues in wave modeling, including the air-sea interaction processes, and the physics of the wave-current and dissipation processes. In the second paper A C Radder focuses his discussion on the “Hamiltonian Dynamics of Water Waves”. He demonstrates that the Hamiltonian theory of surface waves can be formulated in terms of surface elevation and the velocity potential at the free surface as canonical variables. Several evolution equations, can be readily obtained. Radder also points out the need to develop a stochastic wave model in the shallow-water environment.The maximum runup is arguably the single most important parameter in the design of coastal structures and for the evaluation of the inundation potential of storm surges and tsunamis. C E Synolakis presents a thorough review of the “Exact Solutions of Shallow-Water Wave Equations”. For a single sloping beach, the evolution and runup of solitary, dipole, N and cnoidal waves are discussed. These solutions are then extended to more practical problems.The last two papers concern the flow and sediment motions near the seafloor. In their paper, “Boundary Layer and Sediment Dynamics Under Sea Waves”, P Blondeaux and G Vittori give an expert review of the recent contributions on the understanding of the interaction of the coherent vortex with cohesionless or partially cohesive sediments in a boundary layer. The formation and development of small-scale bedforms in the coastal regions are also discussed. Finally, in “Wave Scour Around Structures”, B M Sumer and J Fredsøe review the scouring processes around various types of structures. Many recent experimental data and theoretical developments are presented.
Publisher: World Scientific
ISBN: 9814496723
Category : Technology & Engineering
Languages : en
Pages : 263
Book Description
This volume consists of five excellent review papers. In the first paper, “A Review of Coastal Wave Modeling: The Physical and Mathematical Problems”, N E Huang presents a summary of the state-of-the-art of wave modeling in deep waters. He points out several shortcomings in existing modeling approaches and expresses the urgent need for developing a statistical theory of surface waves in shallow waters. Huang believes that the statistical theory can be formulated as the soliton turbulence. He also points out other important issues in wave modeling, including the air-sea interaction processes, and the physics of the wave-current and dissipation processes. In the second paper A C Radder focuses his discussion on the “Hamiltonian Dynamics of Water Waves”. He demonstrates that the Hamiltonian theory of surface waves can be formulated in terms of surface elevation and the velocity potential at the free surface as canonical variables. Several evolution equations, can be readily obtained. Radder also points out the need to develop a stochastic wave model in the shallow-water environment.The maximum runup is arguably the single most important parameter in the design of coastal structures and for the evaluation of the inundation potential of storm surges and tsunamis. C E Synolakis presents a thorough review of the “Exact Solutions of Shallow-Water Wave Equations”. For a single sloping beach, the evolution and runup of solitary, dipole, N and cnoidal waves are discussed. These solutions are then extended to more practical problems.The last two papers concern the flow and sediment motions near the seafloor. In their paper, “Boundary Layer and Sediment Dynamics Under Sea Waves”, P Blondeaux and G Vittori give an expert review of the recent contributions on the understanding of the interaction of the coherent vortex with cohesionless or partially cohesive sediments in a boundary layer. The formation and development of small-scale bedforms in the coastal regions are also discussed. Finally, in “Wave Scour Around Structures”, B M Sumer and J Fredsøe review the scouring processes around various types of structures. Many recent experimental data and theoretical developments are presented.
Lectures on the Theory of Water Waves
Author: Thomas J. Bridges
Publisher: Cambridge University Press
ISBN: 1316558940
Category : Science
Languages : en
Pages : 299
Book Description
In the summer of 2014 leading experts in the theory of water waves gathered at the Newton Institute for Mathematical Sciences in Cambridge for four weeks of research interaction. A cross-section of those experts was invited to give introductory-level talks on active topics. This book is a compilation of those talks and illustrates the diversity, intensity, and progress of current research in this area. The key themes that emerge are numerical methods for analysis, stability and simulation of water waves, transform methods, rigorous analysis of model equations, three-dimensionality of water waves, variational principles, shallow water hydrodynamics, the role of deterministic and random bottom topography, and modulation equations. This book is an ideal introduction for PhD students and researchers looking for a research project. It may also be used as a supplementary text for advanced courses in mathematics or fluid dynamics.
Publisher: Cambridge University Press
ISBN: 1316558940
Category : Science
Languages : en
Pages : 299
Book Description
In the summer of 2014 leading experts in the theory of water waves gathered at the Newton Institute for Mathematical Sciences in Cambridge for four weeks of research interaction. A cross-section of those experts was invited to give introductory-level talks on active topics. This book is a compilation of those talks and illustrates the diversity, intensity, and progress of current research in this area. The key themes that emerge are numerical methods for analysis, stability and simulation of water waves, transform methods, rigorous analysis of model equations, three-dimensionality of water waves, variational principles, shallow water hydrodynamics, the role of deterministic and random bottom topography, and modulation equations. This book is an ideal introduction for PhD students and researchers looking for a research project. It may also be used as a supplementary text for advanced courses in mathematics or fluid dynamics.
Numerical Simulation of Water Waves
Author: Jianhua Tao
Publisher: Springer Nature
ISBN: 9811528411
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
This book discusses the numerical simulation of water waves, which combines mathematical theories and modern techniques of numerical simulation to solve the problems associated with waves in coastal, ocean, and environmental engineering. Bridging the gap between practical mathematics and engineering, the book describes wave mechanics, establishment of mathematical wave models, modern numerical simulation techniques, and applications of numerical models in engineering. It also explores environmental issues related to water waves in coastal regions, such as pollutant and sediment transport, and introduces numerical wave flumes and wave basins. The material is self-contained, with numerous illustrations and tables, and most of the mathematical and engineering concepts are presented or derived in the text. The book is intended for researchers, graduate students and engineers in the fields of hydraulic, coastal, ocean and environmental engineering with a background in fluid mechanics and numerical simulation methods.
Publisher: Springer Nature
ISBN: 9811528411
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
This book discusses the numerical simulation of water waves, which combines mathematical theories and modern techniques of numerical simulation to solve the problems associated with waves in coastal, ocean, and environmental engineering. Bridging the gap between practical mathematics and engineering, the book describes wave mechanics, establishment of mathematical wave models, modern numerical simulation techniques, and applications of numerical models in engineering. It also explores environmental issues related to water waves in coastal regions, such as pollutant and sediment transport, and introduces numerical wave flumes and wave basins. The material is self-contained, with numerous illustrations and tables, and most of the mathematical and engineering concepts are presented or derived in the text. The book is intended for researchers, graduate students and engineers in the fields of hydraulic, coastal, ocean and environmental engineering with a background in fluid mechanics and numerical simulation methods.
Waves And Wave Forces On Coastal And Ocean Structures
Author: Robert T Hudspeth
Publisher: World Scientific
ISBN: 9814483982
Category : Technology & Engineering
Languages : en
Pages : 954
Book Description
This book focuses on: (1) the physics of the fundamental dynamics of fluids and of semi-immersed Lagrangian solid bodies that are responding to wave-induced loads; (2) the scaling of dimensional equations and boundary value problems in order to determine a small dimensionless parameter ε that may be applied to linearize the equations and the boundary value problems so as to obtain a linear system; (3) the replacement of differential and integral calculus with algebraic equations that require only algebraic substitutions instead of differentiations and integrations; and (4) the importance of comparing numerical and analytical computations with data from laboratories and/or nature.
Publisher: World Scientific
ISBN: 9814483982
Category : Technology & Engineering
Languages : en
Pages : 954
Book Description
This book focuses on: (1) the physics of the fundamental dynamics of fluids and of semi-immersed Lagrangian solid bodies that are responding to wave-induced loads; (2) the scaling of dimensional equations and boundary value problems in order to determine a small dimensionless parameter ε that may be applied to linearize the equations and the boundary value problems so as to obtain a linear system; (3) the replacement of differential and integral calculus with algebraic equations that require only algebraic substitutions instead of differentiations and integrations; and (4) the importance of comparing numerical and analytical computations with data from laboratories and/or nature.