Author: Miklos Bona
Publisher: World Scientific
ISBN: 9811277869
Category : Mathematics
Languages : en
Pages : 636
Book Description
The first half of the book walks the reader through methods of counting, both direct elementary methods and the more advanced method of generating functions. Then, in the second half of the book, the reader learns how to apply these methods to fascinating objects, such as graphs, designs, random variables, partially ordered sets, and algorithms. In short, the first half emphasizes depth by discussing counting methods at length; the second half aims for breadth, by showing how numerous the applications of our methods are.New to this fifth edition of A Walk Through Combinatorics is the addition of Instant Check exercises — more than a hundred in total — which are located at the end of most subsections. As was the case for all previous editions, the exercises sometimes contain new material that was not discussed in the text, allowing instructors to spend more time on a given topic if they wish to do so. With a thorough introduction into enumeration and graph theory, as well as a chapter on permutation patterns (not often covered in other textbooks), this book is well suited for any undergraduate introductory combinatorics class.
Walk Through Combinatorics, A: An Introduction To Enumeration, Graph Theory, And Selected Other Topics (Fifth Edition)
Author: Miklos Bona
Publisher: World Scientific
ISBN: 9811277869
Category : Mathematics
Languages : en
Pages : 636
Book Description
The first half of the book walks the reader through methods of counting, both direct elementary methods and the more advanced method of generating functions. Then, in the second half of the book, the reader learns how to apply these methods to fascinating objects, such as graphs, designs, random variables, partially ordered sets, and algorithms. In short, the first half emphasizes depth by discussing counting methods at length; the second half aims for breadth, by showing how numerous the applications of our methods are.New to this fifth edition of A Walk Through Combinatorics is the addition of Instant Check exercises — more than a hundred in total — which are located at the end of most subsections. As was the case for all previous editions, the exercises sometimes contain new material that was not discussed in the text, allowing instructors to spend more time on a given topic if they wish to do so. With a thorough introduction into enumeration and graph theory, as well as a chapter on permutation patterns (not often covered in other textbooks), this book is well suited for any undergraduate introductory combinatorics class.
Publisher: World Scientific
ISBN: 9811277869
Category : Mathematics
Languages : en
Pages : 636
Book Description
The first half of the book walks the reader through methods of counting, both direct elementary methods and the more advanced method of generating functions. Then, in the second half of the book, the reader learns how to apply these methods to fascinating objects, such as graphs, designs, random variables, partially ordered sets, and algorithms. In short, the first half emphasizes depth by discussing counting methods at length; the second half aims for breadth, by showing how numerous the applications of our methods are.New to this fifth edition of A Walk Through Combinatorics is the addition of Instant Check exercises — more than a hundred in total — which are located at the end of most subsections. As was the case for all previous editions, the exercises sometimes contain new material that was not discussed in the text, allowing instructors to spend more time on a given topic if they wish to do so. With a thorough introduction into enumeration and graph theory, as well as a chapter on permutation patterns (not often covered in other textbooks), this book is well suited for any undergraduate introductory combinatorics class.
A Walk Through Combinatorics
Author: Mikl¢s B¢na
Publisher: World Scientific
ISBN: 9812568859
Category : Mathematics
Languages : en
Pages : 492
Book Description
This is a textbook for an introductory combinatorics course that can take up one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course. Just as with the first edition, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible for the talented and hard-working undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings and Eulerian and Hamiltonian cycles. The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, and algorithms and complexity. As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.
Publisher: World Scientific
ISBN: 9812568859
Category : Mathematics
Languages : en
Pages : 492
Book Description
This is a textbook for an introductory combinatorics course that can take up one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course. Just as with the first edition, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible for the talented and hard-working undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings and Eulerian and Hamiltonian cycles. The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, and algorithms and complexity. As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.
Combinatorics
Author: Peter Jephson Cameron
Publisher: Cambridge University Press
ISBN: 9780521457613
Category : Mathematics
Languages : en
Pages : 372
Book Description
Combinatorics is a subject of increasing importance because of its links with computer science, statistics, and algebra. This textbook stresses common techniques (such as generating functions and recursive construction) that underlie the great variety of subject matter, and the fact that a constructive or algorithmic proof is more valuable than an existence proof. The author emphasizes techniques as well as topics and includes many algorithms described in simple terms. The text should provide essential background for students in all parts of discrete mathematics.
Publisher: Cambridge University Press
ISBN: 9780521457613
Category : Mathematics
Languages : en
Pages : 372
Book Description
Combinatorics is a subject of increasing importance because of its links with computer science, statistics, and algebra. This textbook stresses common techniques (such as generating functions and recursive construction) that underlie the great variety of subject matter, and the fact that a constructive or algorithmic proof is more valuable than an existence proof. The author emphasizes techniques as well as topics and includes many algorithms described in simple terms. The text should provide essential background for students in all parts of discrete mathematics.
A Course in Combinatorics
Author: J. H. van Lint
Publisher: Cambridge University Press
ISBN: 9780521006019
Category : Mathematics
Languages : en
Pages : 620
Book Description
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.
Publisher: Cambridge University Press
ISBN: 9780521006019
Category : Mathematics
Languages : en
Pages : 620
Book Description
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.
Introductory Combinatorics
Author: Kenneth P. Bogart
Publisher: Harcourt Brace College Publishers
ISBN:
Category : Computers
Languages : en
Pages : 648
Book Description
Introductory, Combinatorics, Third Edition is designed for introductory courses in combinatorics, or more generally, discrete mathematics. The author, Kenneth Bogart, has chosen core material of value to students in a wide variety of disciplines: mathematics, computer science, statistics, operations research, physical sciences, and behavioral sciences. The rapid growth in the breadth and depth of the field of combinatorics in the last several decades, first in graph theory and designs and more recently in enumeration and ordered sets, has led to a recognition of combinatorics as a field with which the aspiring mathematician should become familiar. This long-overdue new edition of a popular set presents a broad comprehensive survey of modern combinatorics which is important to the various scientific fields of study.
Publisher: Harcourt Brace College Publishers
ISBN:
Category : Computers
Languages : en
Pages : 648
Book Description
Introductory, Combinatorics, Third Edition is designed for introductory courses in combinatorics, or more generally, discrete mathematics. The author, Kenneth Bogart, has chosen core material of value to students in a wide variety of disciplines: mathematics, computer science, statistics, operations research, physical sciences, and behavioral sciences. The rapid growth in the breadth and depth of the field of combinatorics in the last several decades, first in graph theory and designs and more recently in enumeration and ordered sets, has led to a recognition of combinatorics as a field with which the aspiring mathematician should become familiar. This long-overdue new edition of a popular set presents a broad comprehensive survey of modern combinatorics which is important to the various scientific fields of study.
Introduction To Partial Differential Equations (With Maple), An: A Concise Course
Author: Zhilin Li
Publisher: World Scientific
ISBN: 9811228647
Category : Mathematics
Languages : en
Pages : 218
Book Description
The book is designed for undergraduate or beginning level graduate students, and students from interdisciplinary areas including engineers, and others who need to use partial differential equations, Fourier series, Fourier and Laplace transforms. The prerequisite is a basic knowledge of calculus, linear algebra, and ordinary differential equations.The textbook aims to be practical, elementary, and reasonably rigorous; the book is concise in that it describes fundamental solution techniques for first order, second order, linear partial differential equations for general solutions, fundamental solutions, solution to Cauchy (initial value) problems, and boundary value problems for different PDEs in one and two dimensions, and different coordinates systems. Analytic solutions to boundary value problems are based on Sturm-Liouville eigenvalue problems and series solutions.The book is accompanied with enough well tested Maple files and some Matlab codes that are available online. The use of Maple makes the complicated series solution simple, interactive, and visible. These features distinguish the book from other textbooks available in the related area.
Publisher: World Scientific
ISBN: 9811228647
Category : Mathematics
Languages : en
Pages : 218
Book Description
The book is designed for undergraduate or beginning level graduate students, and students from interdisciplinary areas including engineers, and others who need to use partial differential equations, Fourier series, Fourier and Laplace transforms. The prerequisite is a basic knowledge of calculus, linear algebra, and ordinary differential equations.The textbook aims to be practical, elementary, and reasonably rigorous; the book is concise in that it describes fundamental solution techniques for first order, second order, linear partial differential equations for general solutions, fundamental solutions, solution to Cauchy (initial value) problems, and boundary value problems for different PDEs in one and two dimensions, and different coordinates systems. Analytic solutions to boundary value problems are based on Sturm-Liouville eigenvalue problems and series solutions.The book is accompanied with enough well tested Maple files and some Matlab codes that are available online. The use of Maple makes the complicated series solution simple, interactive, and visible. These features distinguish the book from other textbooks available in the related area.
A Walk Through Combinatorics
Author: Miklós Bóna
Publisher:
ISBN: 9789811278242
Category : Combinatorial analysis
Languages : en
Pages : 0
Book Description
"The first half of the book walks the reader through methods of counting, both direct elementary methods and the more advanced method of generating functions. Then, in the second half of the book, the reader learns how to apply these methods to fascinating objects, such as graphs, designs, random variables, partially ordered sets, and algorithms. In short, the first half emphasizes depth by discussing counting methods at length; the second half aims for breadth, by showing how numerous the applications of our methods are. New to this fifth edition of A Walk Through Combinatorics is the addition of Instant Check exercises - more than a hundred in total - which are located at the end of most subsections. As was the case for all previous editions, the exercises sometimes contain new material that was not discussed in the text, allowing instructors to spend more time on a given topic if they wish to do so. With a thorough introduction into enumeration and graph theory, as well as a chapter on permutation patterns (not often covered in other textbooks), this book is well suited for any undergraduate introductory combinatorics class"--
Publisher:
ISBN: 9789811278242
Category : Combinatorial analysis
Languages : en
Pages : 0
Book Description
"The first half of the book walks the reader through methods of counting, both direct elementary methods and the more advanced method of generating functions. Then, in the second half of the book, the reader learns how to apply these methods to fascinating objects, such as graphs, designs, random variables, partially ordered sets, and algorithms. In short, the first half emphasizes depth by discussing counting methods at length; the second half aims for breadth, by showing how numerous the applications of our methods are. New to this fifth edition of A Walk Through Combinatorics is the addition of Instant Check exercises - more than a hundred in total - which are located at the end of most subsections. As was the case for all previous editions, the exercises sometimes contain new material that was not discussed in the text, allowing instructors to spend more time on a given topic if they wish to do so. With a thorough introduction into enumeration and graph theory, as well as a chapter on permutation patterns (not often covered in other textbooks), this book is well suited for any undergraduate introductory combinatorics class"--
Applied Combinatorics
Author: Alan Tucker
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
"T. 1. Graph Theory. 1. Ch. 1. Elements of Graph Theory. 3. Ch. 2. Covering Circuits and Graph Coloring. 53. Ch. 3. Trees and Searching. 95. Ch. 4. Network Algorithms. 129. Pt. 2. Enumeration. 167. Ch. 5. General Counting Methods for Arrangements and Selections. 169. Ch. 6. Generating Functions. 241. Ch. 7. Recurrence Relations. 273. Ch. 8. Inclusion-Exclusion. 309. Pt. 3. Additional Topics. 341. Ch. 9. Polya's Enumeration Formula. 343. Ch. 10. Games with Graphs. 371. . Appendix. 387. . Glossary of Counting and Graph Theory Terms. 403. . Bibliography. 407. . Solutions to Odd-Numbered Problems. 409. . Index. 441.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
"T. 1. Graph Theory. 1. Ch. 1. Elements of Graph Theory. 3. Ch. 2. Covering Circuits and Graph Coloring. 53. Ch. 3. Trees and Searching. 95. Ch. 4. Network Algorithms. 129. Pt. 2. Enumeration. 167. Ch. 5. General Counting Methods for Arrangements and Selections. 169. Ch. 6. Generating Functions. 241. Ch. 7. Recurrence Relations. 273. Ch. 8. Inclusion-Exclusion. 309. Pt. 3. Additional Topics. 341. Ch. 9. Polya's Enumeration Formula. 343. Ch. 10. Games with Graphs. 371. . Appendix. 387. . Glossary of Counting and Graph Theory Terms. 403. . Bibliography. 407. . Solutions to Odd-Numbered Problems. 409. . Index. 441.
Data Analysis Methods in Physical Oceanography
Author: Richard E. Thomson
Publisher: Elsevier
ISBN: 0080477003
Category : Science
Languages : en
Pages : 654
Book Description
Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999
Publisher: Elsevier
ISBN: 0080477003
Category : Science
Languages : en
Pages : 654
Book Description
Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999
Graph Theory in America
Author: Robin Wilson
Publisher: Princeton University Press
ISBN: 0691194025
Category : Computers
Languages : en
Pages : 320
Book Description
How a new mathematical field grew and matured in America Graph Theory in America focuses on the development of graph theory in North America from 1876 to 1976. At the beginning of this period, James Joseph Sylvester, perhaps the finest mathematician in the English-speaking world, took up his appointment as the first professor of mathematics at the Johns Hopkins University, where his inaugural lecture outlined connections between graph theory, algebra, and chemistry—shortly after, he introduced the word graph in our modern sense. A hundred years later, in 1976, graph theory witnessed the solution of the long-standing four color problem by Kenneth Appel and Wolfgang Haken of the University of Illinois. Tracing graph theory’s trajectory across its first century, this book looks at influential figures in the field, both familiar and less known. Whereas many of the featured mathematicians spent their entire careers working on problems in graph theory, a few such as Hassler Whitney started there and then moved to work in other areas. Others, such as C. S. Peirce, Oswald Veblen, and George Birkhoff, made excursions into graph theory while continuing their focus elsewhere. Between the main chapters, the book provides short contextual interludes, describing how the American university system developed and how graph theory was progressing in Europe. Brief summaries of specific publications that influenced the subject’s development are also included. Graph Theory in America tells how a remarkable area of mathematics landed on American soil, took root, and flourished.
Publisher: Princeton University Press
ISBN: 0691194025
Category : Computers
Languages : en
Pages : 320
Book Description
How a new mathematical field grew and matured in America Graph Theory in America focuses on the development of graph theory in North America from 1876 to 1976. At the beginning of this period, James Joseph Sylvester, perhaps the finest mathematician in the English-speaking world, took up his appointment as the first professor of mathematics at the Johns Hopkins University, where his inaugural lecture outlined connections between graph theory, algebra, and chemistry—shortly after, he introduced the word graph in our modern sense. A hundred years later, in 1976, graph theory witnessed the solution of the long-standing four color problem by Kenneth Appel and Wolfgang Haken of the University of Illinois. Tracing graph theory’s trajectory across its first century, this book looks at influential figures in the field, both familiar and less known. Whereas many of the featured mathematicians spent their entire careers working on problems in graph theory, a few such as Hassler Whitney started there and then moved to work in other areas. Others, such as C. S. Peirce, Oswald Veblen, and George Birkhoff, made excursions into graph theory while continuing their focus elsewhere. Between the main chapters, the book provides short contextual interludes, describing how the American university system developed and how graph theory was progressing in Europe. Brief summaries of specific publications that influenced the subject’s development are also included. Graph Theory in America tells how a remarkable area of mathematics landed on American soil, took root, and flourished.