Author: M. J. N. Priestley
Publisher: Iuss Press
ISBN:
Category : Science
Languages : en
Pages : 750
Book Description
Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.
Displacement-based Seismic Design of Structures
Author: M. J. N. Priestley
Publisher: Iuss Press
ISBN:
Category : Science
Languages : en
Pages : 750
Book Description
Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.
Publisher: Iuss Press
ISBN:
Category : Science
Languages : en
Pages : 750
Book Description
Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.
Seismic Rehabilitation of Existing Buildings
Author: American Society of Civil Engineers
Publisher: ASCE Publications
ISBN:
Category : Architecture
Languages : en
Pages : 436
Book Description
Standard ASCE/SEI 41-06 presents the latest generation of performance-based seismic rehabilitation methodology.
Publisher: ASCE Publications
ISBN:
Category : Architecture
Languages : en
Pages : 436
Book Description
Standard ASCE/SEI 41-06 presents the latest generation of performance-based seismic rehabilitation methodology.
Computational Mechanics
Author: M. W. Yuan
Publisher: 清华大学出版社有限公司
ISBN: 9787302093435
Category : Computer-aided design
Languages : en
Pages : 902
Book Description
Publisher: 清华大学出版社有限公司
ISBN: 9787302093435
Category : Computer-aided design
Languages : en
Pages : 902
Book Description
Creative Systems in Structural and Construction Engineering
Author: Amarjit Singh
Publisher: CRC Press
ISBN: 9789058091611
Category : Technology & Engineering
Languages : en
Pages : 1048
Book Description
An examination of creative systems in structural and construction engineering taken from conference proceedings. Topics covered range from construction methods, safety and quality to seismic response of structural elements and soils and pavement analysis.
Publisher: CRC Press
ISBN: 9789058091611
Category : Technology & Engineering
Languages : en
Pages : 1048
Book Description
An examination of creative systems in structural and construction engineering taken from conference proceedings. Topics covered range from construction methods, safety and quality to seismic response of structural elements and soils and pavement analysis.
Punching shear of structural concrete slabs
Author: FIB - Féd. Int. du Béton
Publisher: FIB - Féd. Int. du Béton
ISBN: 2883941211
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
fib Bulletin 81 reports the latest information available to researchers and practitioners on the analysis, design and experimental evidence of punching shear of structural concrete slabs. It follows previous efforts by the International Federation for Structural Concrete (fib) and its predecessor the Euro-International Committee for Concrete (CEB), through CEB Bulletin 168, Punching Shear in Reinforced Concrete (1985) and fibBulletin 12, Punching of structural concrete slabs (2001), and an international symposium sponsored by the punching shear subcommittee of ACI Committee 445 (Shear and Torsion) and held in Kansas City, Mo., USA, in 2005. This bulletin contains 18 papers that were presented in three sessions as part of an international symposium held in Philadelphia, Pa., USA, on October 25, 2016. The symposium was co-organized by the punching shear sub-committee of ACI 445 and by fib Working Party 2.2.3 (Punching and Shear in Slabs) with the objectives of not only disseminating information on this important design subject but also promoting harmonization among the various design theories and treatment of key aspects of punching shear design. The papers are organized in the same order they were presented in the symposium. The symposium honored Professor Emeritus Neil M. Hawkins (University of Illinois at Urbana-Champaign, USA), whose contributions through the years in the field of punching shear of structural concrete slabs have been paramount. The papers cover key aspects related to punching shear of structural concrete slabs under different loading conditions, the study of size effect on punching capacity of slabs, the effect of slab reinforcement ratio on the response and failure mode of slabs, without and with shear reinforcement, and its implications for the design and formulation in codes of practice, an examination of different analytical tools to predict the punching shear response of slabs, the study of the post-punching response of concrete slabs, the evaluation of design provisions in modern codes based on recent experimental evidence and new punching shear theories, and an overview of the combined efforts undertaken jointly by ACI 445 and fib WP 2.2.3 to generate test result databanks for the evaluation and calibration of punching shear design recommendations in North American and international codes of practice.
Publisher: FIB - Féd. Int. du Béton
ISBN: 2883941211
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
fib Bulletin 81 reports the latest information available to researchers and practitioners on the analysis, design and experimental evidence of punching shear of structural concrete slabs. It follows previous efforts by the International Federation for Structural Concrete (fib) and its predecessor the Euro-International Committee for Concrete (CEB), through CEB Bulletin 168, Punching Shear in Reinforced Concrete (1985) and fibBulletin 12, Punching of structural concrete slabs (2001), and an international symposium sponsored by the punching shear subcommittee of ACI Committee 445 (Shear and Torsion) and held in Kansas City, Mo., USA, in 2005. This bulletin contains 18 papers that were presented in three sessions as part of an international symposium held in Philadelphia, Pa., USA, on October 25, 2016. The symposium was co-organized by the punching shear sub-committee of ACI 445 and by fib Working Party 2.2.3 (Punching and Shear in Slabs) with the objectives of not only disseminating information on this important design subject but also promoting harmonization among the various design theories and treatment of key aspects of punching shear design. The papers are organized in the same order they were presented in the symposium. The symposium honored Professor Emeritus Neil M. Hawkins (University of Illinois at Urbana-Champaign, USA), whose contributions through the years in the field of punching shear of structural concrete slabs have been paramount. The papers cover key aspects related to punching shear of structural concrete slabs under different loading conditions, the study of size effect on punching capacity of slabs, the effect of slab reinforcement ratio on the response and failure mode of slabs, without and with shear reinforcement, and its implications for the design and formulation in codes of practice, an examination of different analytical tools to predict the punching shear response of slabs, the study of the post-punching response of concrete slabs, the evaluation of design provisions in modern codes based on recent experimental evidence and new punching shear theories, and an overview of the combined efforts undertaken jointly by ACI 445 and fib WP 2.2.3 to generate test result databanks for the evaluation and calibration of punching shear design recommendations in North American and international codes of practice.
Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022
Author: Guoqing Geng
Publisher: Springer Nature
ISBN: 9811973318
Category : Technology & Engineering
Languages : en
Pages : 1545
Book Description
This book presents articles from The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022, organized by National University of Singapore. These peer-reviewed articles, authored by professional engineers, academics and researchers, highlight the recent research and developments in structural engineering and construction, embracing the theme- “Towards a Resilient and Sustainable City”. The papers presented in this proceeding provide in-depth discussions with key insights into the future research, development and engineering translation in structural engineering and construction.
Publisher: Springer Nature
ISBN: 9811973318
Category : Technology & Engineering
Languages : en
Pages : 1545
Book Description
This book presents articles from The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022, organized by National University of Singapore. These peer-reviewed articles, authored by professional engineers, academics and researchers, highlight the recent research and developments in structural engineering and construction, embracing the theme- “Towards a Resilient and Sustainable City”. The papers presented in this proceeding provide in-depth discussions with key insights into the future research, development and engineering translation in structural engineering and construction.
Failures in Concrete Structures
Author: Robin Whittle
Publisher: CRC Press
ISBN: 0203861272
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
This book presents a selection of the author‘s firsthand experience with incidents related to reinforced and prestressed concrete structures, helping readers gain an understanding of errors that can occur in order to avoid making them. He includes mistakes discovered at the design stage, ones that led to failures, and some that involved partial structure collapse all of which required remedial action to ensure safety. The book focuses on specific incidents that occurred at various points in the construction process, including mistakes related to structural misunderstanding, extrapolation of codes of practice, and poor construction.
Publisher: CRC Press
ISBN: 0203861272
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
This book presents a selection of the author‘s firsthand experience with incidents related to reinforced and prestressed concrete structures, helping readers gain an understanding of errors that can occur in order to avoid making them. He includes mistakes discovered at the design stage, ones that led to failures, and some that involved partial structure collapse all of which required remedial action to ensure safety. The book focuses on specific incidents that occurred at various points in the construction process, including mistakes related to structural misunderstanding, extrapolation of codes of practice, and poor construction.
Brannigan's Building Construction for the Fire Service
Author: Francis Brannigan
Publisher: Jones & Bartlett Publishers
ISBN: 0763778028
Category : Education
Languages : en
Pages : 368
Book Description
Brannigan’s Building Construction for the Fire Service, Fourth Edition is a must read for fire fighters, prospective fire fighters, and fire science students. This edition continues the Brannigan tradition of using plain language to describe technical information about different building types and their unique hazards. This text ensures that critical fire fighting information is easy-to-understand and gives valuable experience to fire fighters before stepping onto the fireground. The first edition of Building Construction for the Fire Service was published in 1971. Frank Brannigan was compelled to write the most comprehensive building construction text for the fire service so that he could save fire fighters’ lives. His passion for detail and extensive practical experience helped him to develop the most popular text on the market. His motto of: “Know your buildings,” informs every aspect of this new edition of the text. Listen to a Podcast with Brannigan's Building Construction for the Fire Service, Fourth Edition co-author Glenn Corbett to learn more about this training program! Glenn discusses his relationship with the late Frank Brannigan, the dangers of heavy construction timber, occupancy specific hazards, and other areas of emphasis within the Fourth Edition. To listen now, visit: http://d2jw81rkebrcvk.cloudfront.net/assets.multimedia/audio/Building_Construction.mp3.
Publisher: Jones & Bartlett Publishers
ISBN: 0763778028
Category : Education
Languages : en
Pages : 368
Book Description
Brannigan’s Building Construction for the Fire Service, Fourth Edition is a must read for fire fighters, prospective fire fighters, and fire science students. This edition continues the Brannigan tradition of using plain language to describe technical information about different building types and their unique hazards. This text ensures that critical fire fighting information is easy-to-understand and gives valuable experience to fire fighters before stepping onto the fireground. The first edition of Building Construction for the Fire Service was published in 1971. Frank Brannigan was compelled to write the most comprehensive building construction text for the fire service so that he could save fire fighters’ lives. His passion for detail and extensive practical experience helped him to develop the most popular text on the market. His motto of: “Know your buildings,” informs every aspect of this new edition of the text. Listen to a Podcast with Brannigan's Building Construction for the Fire Service, Fourth Edition co-author Glenn Corbett to learn more about this training program! Glenn discusses his relationship with the late Frank Brannigan, the dangers of heavy construction timber, occupancy specific hazards, and other areas of emphasis within the Fourth Edition. To listen now, visit: http://d2jw81rkebrcvk.cloudfront.net/assets.multimedia/audio/Building_Construction.mp3.
Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems
Author: Alphose Zingoni
Publisher: CRC Press
ISBN: 1000824365
Category : Technology & Engineering
Languages : en
Pages : 4438
Book Description
Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems comprises 330 papers that were presented at the Eighth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2022, Cape Town, South Africa, 5-7 September 2022). The topics featured may be clustered into six broad categories that span the themes of mechanics, modelling and engineering design: (i) mechanics of materials (elasticity, plasticity, porous media, fracture, fatigue, damage, delamination, viscosity, creep, shrinkage, etc); (ii) mechanics of structures (dynamics, vibration, seismic response, soil-structure interaction, fluid-structure interaction, response to blast and impact, response to fire, structural stability, buckling, collapse behaviour); (iii) numerical modelling and experimental testing (numerical methods, simulation techniques, multi-scale modelling, computational modelling, laboratory testing, field testing, experimental measurements); (iv) design in traditional engineering materials (steel, concrete, steel-concrete composite, aluminium, masonry, timber); (v) innovative concepts, sustainable engineering and special structures (nanostructures, adaptive structures, smart structures, composite structures, glass structures, bio-inspired structures, shells, membranes, space structures, lightweight structures, etc); (vi) the engineering process and life-cycle considerations (conceptualisation, planning, analysis, design, optimization, construction, assembly, manufacture, maintenance, monitoring, assessment, repair, strengthening, retrofitting, decommissioning). Two versions of the papers are available: full papers of length 6 pages are included in the e-book, while short papers of length 2 pages, intended to be concise but self-contained summaries of the full papers, are in the printed book. This work will be of interest to civil, structural, mechanical, marine and aerospace engineers, as well as planners and architects.
Publisher: CRC Press
ISBN: 1000824365
Category : Technology & Engineering
Languages : en
Pages : 4438
Book Description
Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems comprises 330 papers that were presented at the Eighth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2022, Cape Town, South Africa, 5-7 September 2022). The topics featured may be clustered into six broad categories that span the themes of mechanics, modelling and engineering design: (i) mechanics of materials (elasticity, plasticity, porous media, fracture, fatigue, damage, delamination, viscosity, creep, shrinkage, etc); (ii) mechanics of structures (dynamics, vibration, seismic response, soil-structure interaction, fluid-structure interaction, response to blast and impact, response to fire, structural stability, buckling, collapse behaviour); (iii) numerical modelling and experimental testing (numerical methods, simulation techniques, multi-scale modelling, computational modelling, laboratory testing, field testing, experimental measurements); (iv) design in traditional engineering materials (steel, concrete, steel-concrete composite, aluminium, masonry, timber); (v) innovative concepts, sustainable engineering and special structures (nanostructures, adaptive structures, smart structures, composite structures, glass structures, bio-inspired structures, shells, membranes, space structures, lightweight structures, etc); (vi) the engineering process and life-cycle considerations (conceptualisation, planning, analysis, design, optimization, construction, assembly, manufacture, maintenance, monitoring, assessment, repair, strengthening, retrofitting, decommissioning). Two versions of the papers are available: full papers of length 6 pages are included in the e-book, while short papers of length 2 pages, intended to be concise but self-contained summaries of the full papers, are in the printed book. This work will be of interest to civil, structural, mechanical, marine and aerospace engineers, as well as planners and architects.
Risk Management Series: Incremental Protection for Existing Commercial Buildings from Terrorist Attack
Author: Federal Emergency Agency
Publisher: FEMA
ISBN:
Category :
Languages : en
Pages : 170
Book Description
The Federal Emergency Management Agency (FEMA) developed FEMA 459, Incremental Protection for Existing Commercial Buildings from Terrorist Attack, to provide guidance to owners of existing commercial buildings and their architects and engineers on security and operational enhancements to address vulnerabilities to explosive blasts and chemical, biological, and radiological hazards. It also addresses how to integrate these enhancements into the ongoing building maintenance and capital improvement programs. These enhancements are intended to mitigate or eliminate long-term risk to people and property. FEMA's Risk Management Series publications addressing security risks are based on two core documents: FEMA 426, Reference Manual to Mitigate Potential Terrorist Attacks Against buildings, and FEMA 452, Risk Assessment: A How-To Guide to Mitigate Potential Terrorist Attacks Against Buildings. FEMA 426 provides guidance to the building science community of architects and engineers on reducing physical damage caused by terrorist assaults to buildings, related infrastructure, and people. FEMA 452 outlines methods for identifying the critical assets and functions within buildings, determining the potential threats to those assets, and assessing the building's vulnerabilities to those threats. This assessment of risks facilitates hazard mitigation decision-making. Specifically, the document addresses methods for reducing physical damage to structural and nonstructural components of buildings and related infrastructure and reducing resultant casualties during conventional bomb attacks, as well as attacks involving chemical, biological, and radiological agents. FEMA 459 can be used in conjunction with FEMA 452. This manual presents an integrated, incremental rehabilitation approach to implementing the outcomes of a risk assessment completed in accordance with FEMA 452, Risk Assessment: A How-To Guide to Mitigate Potential Terrorist Attacks Against Building. This approach is intended to minimize disruption to building operations and control costs for existing commercial buildings. The integrated incremental approach to risk reduction in buildings was initially developed in relation to seismic risk and was first articulated in FEMA's Risk Management Series in the widely disseminated FEMA 395, Incremental Seismic Rehabilitation of School Buildings (K-12), published in June 2003. In 2004 and 2005, FEMA also published Incremental Seismic Rehabilitation manuals (FEMA 396-400) for hospitals, office buildings, multifamily apartments, retail buildings, and hotels and motels. This manual outlines an approach to incremental security enhancement in four types of existing commercial buildings: office buildings, retail buildings, multifamily apartment buildings, and hotel and motel buildings. It addresses both physical and operational enhancements that reduce building vulnerabilities to blasts and chemical, biological, and radiological attacks, within the constraints of the existing site conditions and building configurations.
Publisher: FEMA
ISBN:
Category :
Languages : en
Pages : 170
Book Description
The Federal Emergency Management Agency (FEMA) developed FEMA 459, Incremental Protection for Existing Commercial Buildings from Terrorist Attack, to provide guidance to owners of existing commercial buildings and their architects and engineers on security and operational enhancements to address vulnerabilities to explosive blasts and chemical, biological, and radiological hazards. It also addresses how to integrate these enhancements into the ongoing building maintenance and capital improvement programs. These enhancements are intended to mitigate or eliminate long-term risk to people and property. FEMA's Risk Management Series publications addressing security risks are based on two core documents: FEMA 426, Reference Manual to Mitigate Potential Terrorist Attacks Against buildings, and FEMA 452, Risk Assessment: A How-To Guide to Mitigate Potential Terrorist Attacks Against Buildings. FEMA 426 provides guidance to the building science community of architects and engineers on reducing physical damage caused by terrorist assaults to buildings, related infrastructure, and people. FEMA 452 outlines methods for identifying the critical assets and functions within buildings, determining the potential threats to those assets, and assessing the building's vulnerabilities to those threats. This assessment of risks facilitates hazard mitigation decision-making. Specifically, the document addresses methods for reducing physical damage to structural and nonstructural components of buildings and related infrastructure and reducing resultant casualties during conventional bomb attacks, as well as attacks involving chemical, biological, and radiological agents. FEMA 459 can be used in conjunction with FEMA 452. This manual presents an integrated, incremental rehabilitation approach to implementing the outcomes of a risk assessment completed in accordance with FEMA 452, Risk Assessment: A How-To Guide to Mitigate Potential Terrorist Attacks Against Building. This approach is intended to minimize disruption to building operations and control costs for existing commercial buildings. The integrated incremental approach to risk reduction in buildings was initially developed in relation to seismic risk and was first articulated in FEMA's Risk Management Series in the widely disseminated FEMA 395, Incremental Seismic Rehabilitation of School Buildings (K-12), published in June 2003. In 2004 and 2005, FEMA also published Incremental Seismic Rehabilitation manuals (FEMA 396-400) for hospitals, office buildings, multifamily apartments, retail buildings, and hotels and motels. This manual outlines an approach to incremental security enhancement in four types of existing commercial buildings: office buildings, retail buildings, multifamily apartment buildings, and hotel and motel buildings. It addresses both physical and operational enhancements that reduce building vulnerabilities to blasts and chemical, biological, and radiological attacks, within the constraints of the existing site conditions and building configurations.