Author: Anatolij T. Fomenko
Publisher: Springer Science & Business Media
ISBN: 3642762352
Category : Mathematics
Languages : en
Pages : 338
Book Description
Geometry and topology are strongly motivated by the visualization of ideal objects that have certain special characteristics. A clear formulation of a specific property or a logically consistent proof of a theorem often comes only after the mathematician has correctly "seen" what is going on. These pictures which are meant to serve as signposts leading to mathematical understanding, frequently also contain a beauty of their own. The principal aim of this book is to narrate, in an accessible and fairly visual language, about some classical and modern achievements of geometry and topology in both intrinsic mathematical problems and applications to mathematical physics. The book starts from classical notions of topology and ends with remarkable new results in Hamiltonian geometry. Fomenko lays special emphasis upon visual explanations of the problems and results and downplays the abstract logical aspects of calculations. As an example, readers can very quickly penetrate into the new theory of topological descriptions of integrable Hamiltonian differential equations. The book includes numerous graphical sheets drawn by the author, which are presented in special sections of "Visual material". These pictures illustrate the mathematical ideas and results contained in the book. Using these pictures, the reader can understand many modern mathematical ideas and methods. Although "Visual Geometry and Topology" is about mathematics, Fomenko has written and illustrated this book so that students and researchers from all the natural sciences and also artists and art students will find something of interest within its pages.
Visual Geometry and Topology
Author: Anatolij T. Fomenko
Publisher: Springer Science & Business Media
ISBN: 3642762352
Category : Mathematics
Languages : en
Pages : 338
Book Description
Geometry and topology are strongly motivated by the visualization of ideal objects that have certain special characteristics. A clear formulation of a specific property or a logically consistent proof of a theorem often comes only after the mathematician has correctly "seen" what is going on. These pictures which are meant to serve as signposts leading to mathematical understanding, frequently also contain a beauty of their own. The principal aim of this book is to narrate, in an accessible and fairly visual language, about some classical and modern achievements of geometry and topology in both intrinsic mathematical problems and applications to mathematical physics. The book starts from classical notions of topology and ends with remarkable new results in Hamiltonian geometry. Fomenko lays special emphasis upon visual explanations of the problems and results and downplays the abstract logical aspects of calculations. As an example, readers can very quickly penetrate into the new theory of topological descriptions of integrable Hamiltonian differential equations. The book includes numerous graphical sheets drawn by the author, which are presented in special sections of "Visual material". These pictures illustrate the mathematical ideas and results contained in the book. Using these pictures, the reader can understand many modern mathematical ideas and methods. Although "Visual Geometry and Topology" is about mathematics, Fomenko has written and illustrated this book so that students and researchers from all the natural sciences and also artists and art students will find something of interest within its pages.
Publisher: Springer Science & Business Media
ISBN: 3642762352
Category : Mathematics
Languages : en
Pages : 338
Book Description
Geometry and topology are strongly motivated by the visualization of ideal objects that have certain special characteristics. A clear formulation of a specific property or a logically consistent proof of a theorem often comes only after the mathematician has correctly "seen" what is going on. These pictures which are meant to serve as signposts leading to mathematical understanding, frequently also contain a beauty of their own. The principal aim of this book is to narrate, in an accessible and fairly visual language, about some classical and modern achievements of geometry and topology in both intrinsic mathematical problems and applications to mathematical physics. The book starts from classical notions of topology and ends with remarkable new results in Hamiltonian geometry. Fomenko lays special emphasis upon visual explanations of the problems and results and downplays the abstract logical aspects of calculations. As an example, readers can very quickly penetrate into the new theory of topological descriptions of integrable Hamiltonian differential equations. The book includes numerous graphical sheets drawn by the author, which are presented in special sections of "Visual material". These pictures illustrate the mathematical ideas and results contained in the book. Using these pictures, the reader can understand many modern mathematical ideas and methods. Although "Visual Geometry and Topology" is about mathematics, Fomenko has written and illustrated this book so that students and researchers from all the natural sciences and also artists and art students will find something of interest within its pages.
Visual Differential Geometry and Forms
Author: Tristan Needham
Publisher: Princeton University Press
ISBN: 0691203709
Category : Mathematics
Languages : en
Pages : 530
Book Description
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.
Publisher: Princeton University Press
ISBN: 0691203709
Category : Mathematics
Languages : en
Pages : 530
Book Description
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.
Topology and Geometry for Physicists
Author: Charles Nash
Publisher: Courier Corporation
ISBN: 0486318362
Category : Mathematics
Languages : en
Pages : 302
Book Description
Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.
Publisher: Courier Corporation
ISBN: 0486318362
Category : Mathematics
Languages : en
Pages : 302
Book Description
Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.
Computational Geometry, Topology and Physics of Digital Images with Applications
Author: James F. Peters
Publisher: Springer Nature
ISBN: 303022192X
Category : Technology & Engineering
Languages : en
Pages : 455
Book Description
This book discusses the computational geometry, topology and physics of digital images and video frame sequences. This trio of computational approaches encompasses the study of shape complexes, optical vortex nerves and proximities embedded in triangulated video frames and single images, while computational geometry focuses on the geometric structures that infuse triangulated visual scenes. The book first addresses the topology of cellular complexes to provide a basis for an introductory study of the computational topology of visual scenes, exploring the fabric, shapes and structures typically found in visual scenes. The book then examines the inherent geometry and topology of visual scenes, and the fine structure of light and light caustics of visual scenes, which bring into play catastrophe theory and the appearance of light caustic folds and cusps. Following on from this, the book introduces optical vortex nerves in triangulated digital images. In this context, computational physics is synonymous with the study of the fine structure of light choreographed in video frames. This choreography appears as a sequence of snapshots of light reflected and refracted from surface shapes, providing a solid foundation for detecting, analyzing and classifying visual scene shapes.
Publisher: Springer Nature
ISBN: 303022192X
Category : Technology & Engineering
Languages : en
Pages : 455
Book Description
This book discusses the computational geometry, topology and physics of digital images and video frame sequences. This trio of computational approaches encompasses the study of shape complexes, optical vortex nerves and proximities embedded in triangulated video frames and single images, while computational geometry focuses on the geometric structures that infuse triangulated visual scenes. The book first addresses the topology of cellular complexes to provide a basis for an introductory study of the computational topology of visual scenes, exploring the fabric, shapes and structures typically found in visual scenes. The book then examines the inherent geometry and topology of visual scenes, and the fine structure of light and light caustics of visual scenes, which bring into play catastrophe theory and the appearance of light caustic folds and cusps. Following on from this, the book introduces optical vortex nerves in triangulated digital images. In this context, computational physics is synonymous with the study of the fine structure of light choreographed in video frames. This choreography appears as a sequence of snapshots of light reflected and refracted from surface shapes, providing a solid foundation for detecting, analyzing and classifying visual scene shapes.
A First Course in Geometric Topology and Differential Geometry
Author: Ethan D. Bloch
Publisher: Springer Science & Business Media
ISBN: 0817681221
Category : Mathematics
Languages : en
Pages : 433
Book Description
The uniqueness of this text in combining geometric topology and differential geometry lies in its unifying thread: the notion of a surface. With numerous illustrations, exercises and examples, the student comes to understand the relationship of the modern abstract approach to geometric intuition. The text is kept at a concrete level, avoiding unnecessary abstractions, yet never sacrificing mathematical rigor. The book includes topics not usually found in a single book at this level.
Publisher: Springer Science & Business Media
ISBN: 0817681221
Category : Mathematics
Languages : en
Pages : 433
Book Description
The uniqueness of this text in combining geometric topology and differential geometry lies in its unifying thread: the notion of a surface. With numerous illustrations, exercises and examples, the student comes to understand the relationship of the modern abstract approach to geometric intuition. The text is kept at a concrete level, avoiding unnecessary abstractions, yet never sacrificing mathematical rigor. The book includes topics not usually found in a single book at this level.
Intuitive Topology
Author: Viktor Vasilʹevich Prasolov
Publisher: American Mathematical Soc.
ISBN: 0821803565
Category : Mathematics
Languages : en
Pages : 106
Book Description
This book is an introduction to elementary topology presented in an intuitive way, emphasizing the visual aspect. Examples of nontrivial and often unexpected topological phenomena acquaint the reader with the picturesque world of knots, links, vector fields, and two-dimensional surfaces. The book begins with definitions presented in a tangible and perceptible way, on an everyday level, and progressively makes them more precise and rigorous, eventually reaching the level of fairly sophisticated proofs. This allows meaningful problems to be tackled from the outset. Another unusual trait of this book is that it deals mainly with constructions and maps, rather than with proofs that certain maps and constructions do or do not exist. The numerous illustrations are an essential feature. The book is accessible not only to undergraduates but also to high school students and will interest any reader who has some feeling for the visual elegance of geometry and topology.
Publisher: American Mathematical Soc.
ISBN: 0821803565
Category : Mathematics
Languages : en
Pages : 106
Book Description
This book is an introduction to elementary topology presented in an intuitive way, emphasizing the visual aspect. Examples of nontrivial and often unexpected topological phenomena acquaint the reader with the picturesque world of knots, links, vector fields, and two-dimensional surfaces. The book begins with definitions presented in a tangible and perceptible way, on an everyday level, and progressively makes them more precise and rigorous, eventually reaching the level of fairly sophisticated proofs. This allows meaningful problems to be tackled from the outset. Another unusual trait of this book is that it deals mainly with constructions and maps, rather than with proofs that certain maps and constructions do or do not exist. The numerous illustrations are an essential feature. The book is accessible not only to undergraduates but also to high school students and will interest any reader who has some feeling for the visual elegance of geometry and topology.
Differential Topology
Author: Victor Guillemin
Publisher: American Mathematical Soc.
ISBN: 0821851934
Category : Mathematics
Languages : en
Pages : 242
Book Description
Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.
Publisher: American Mathematical Soc.
ISBN: 0821851934
Category : Mathematics
Languages : en
Pages : 242
Book Description
Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.
Visual Complex Analysis
Author: Tristan Needham
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620
Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620
Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
A Visual Introduction to Differential Forms and Calculus on Manifolds
Author: Jon Pierre Fortney
Publisher: Springer
ISBN: 3319969927
Category : Mathematics
Languages : en
Pages : 470
Book Description
This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.
Publisher: Springer
ISBN: 3319969927
Category : Mathematics
Languages : en
Pages : 470
Book Description
This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.
A History of Algebraic and Differential Topology, 1900 - 1960
Author: Jean Dieudonné
Publisher: Springer Science & Business Media
ISBN: 0817649077
Category : Mathematics
Languages : en
Pages : 666
Book Description
This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet
Publisher: Springer Science & Business Media
ISBN: 0817649077
Category : Mathematics
Languages : en
Pages : 666
Book Description
This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet