Author: Ole Ivar Sivertsen
Publisher: CRC Press
ISBN: 9789026518119
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
A discussion of the virtual testing of mechanical systems, presenting theories and techniques implemented in the FEDEM Multidisciplinary Simulation Software. The basis for this approach is the non-linear FE formulation and the Master-Slave techniques used for modelling joints and transmissions.
Virtual Testing of Mechanical Systems
Author: Ole Ivar Sivertsen
Publisher: CRC Press
ISBN: 9789026518119
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
A discussion of the virtual testing of mechanical systems, presenting theories and techniques implemented in the FEDEM Multidisciplinary Simulation Software. The basis for this approach is the non-linear FE formulation and the Master-Slave techniques used for modelling joints and transmissions.
Publisher: CRC Press
ISBN: 9789026518119
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
A discussion of the virtual testing of mechanical systems, presenting theories and techniques implemented in the FEDEM Multidisciplinary Simulation Software. The basis for this approach is the non-linear FE formulation and the Master-Slave techniques used for modelling joints and transmissions.
Automation in the Virtual Testing of Mechanical Systems
Author: Ole Ivar Sivertsen
Publisher: CRC Press
ISBN: 0429879075
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
Automation in the Virtual Testing of Mechanical Systems: Theories and Implementation Techniques provides a practical understanding of Knowledge-Based Engineering (KBE), an approach that is driving automation in engineering. Companies are using the technology to automate engineering tasks, achieving gains in output, and saving time. This book will be the main source of information available for implementing KBE systems, integrating KBE with the finite element methods, and showing how KBE is used to automate engineering and analysis of mechanical systems. The process of combining KBE with optimization techniques is explored, and the use of software tools is presented in some detail. Features Introduces automation with Knowledge-Based Engineering (KBE) in generic mechanical design Develops a framework for generic mechanism modeling including a library format Explores a KBE environment for generic design automation Includes design cases in KBE Gives a presentation of the interwoven technologies used in modern design environments
Publisher: CRC Press
ISBN: 0429879075
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
Automation in the Virtual Testing of Mechanical Systems: Theories and Implementation Techniques provides a practical understanding of Knowledge-Based Engineering (KBE), an approach that is driving automation in engineering. Companies are using the technology to automate engineering tasks, achieving gains in output, and saving time. This book will be the main source of information available for implementing KBE systems, integrating KBE with the finite element methods, and showing how KBE is used to automate engineering and analysis of mechanical systems. The process of combining KBE with optimization techniques is explored, and the use of software tools is presented in some detail. Features Introduces automation with Knowledge-Based Engineering (KBE) in generic mechanical design Develops a framework for generic mechanism modeling including a library format Explores a KBE environment for generic design automation Includes design cases in KBE Gives a presentation of the interwoven technologies used in modern design environments
Automation in the Virtual Testing of Mechanical Systems
Author: Ole Ivar Sivertsen
Publisher: CRC Press
ISBN: 9781138032569
Category :
Languages : en
Pages : 208
Book Description
Automation in the Virtual Testing of Mechanical Systems: Theories and Implementation Techniques provides a practical understanding of Knowledge-Based Engineering (KBE), an approach that is driving automation in engineering. Companies are using the technology to automate engineering tasks, achieving gains in output, and saving time. This book will be the main source of information available for implementing KBE systems, integrating KBE with the finite element methods, and showing how KBE is used to automate engineering and analysis of mechanical systems. The process of combining KBE with optimization techniques is explored, and the use of software tools is presented in detail.
Publisher: CRC Press
ISBN: 9781138032569
Category :
Languages : en
Pages : 208
Book Description
Automation in the Virtual Testing of Mechanical Systems: Theories and Implementation Techniques provides a practical understanding of Knowledge-Based Engineering (KBE), an approach that is driving automation in engineering. Companies are using the technology to automate engineering tasks, achieving gains in output, and saving time. This book will be the main source of information available for implementing KBE systems, integrating KBE with the finite element methods, and showing how KBE is used to automate engineering and analysis of mechanical systems. The process of combining KBE with optimization techniques is explored, and the use of software tools is presented in detail.
Virtual Testing and Predictive Modeling
Author: Bahram Farahmand
Publisher: Springer Science & Business Media
ISBN: 0387959246
Category : Science
Languages : en
Pages : 420
Book Description
Thematerialsusedinmanufacturingtheaerospace,aircraft,automobile,andnuclear parts have inherent aws that may grow under uctuating load environments during the operational phase of the structural hardware. The design philosophy, material selection, analysis approach, testing, quality control, inspection, and manufacturing are key elements that can contribute to failure prevention and assure a trouble-free structure. To have a robust structure, it must be designed to withstand the envir- mental load throughout its service life, even when the structure has pre-existing aws or when a part of the structure has already failed. If the design philosophy of the structure is based on the fail-safe requirements, or multiple load path design, partial failure of a structural component due to crack propagation is localized and safely contained or arrested. For that reason, proper inspection technique must be scheduled for reusable parts to detect the amount and rate of crack growth, and the possible need for repairing or replacement of the part. An example of a fail-sa- designed structure with crack-arrest feature, common to all aircraft structural parts, is the skin-stiffened design con guration. However, in other cases, the design p- losophy has safe-life or single load path feature, where analysts must demonstrate that parts have adequate life during their service operation and the possibility of catastrophic failure is remote. For example, all pressurized vessels that have single load path feature are classi ed as high-risk parts. During their service operation, these tanks may develop cracks, which will grow gradually in a stable manner.
Publisher: Springer Science & Business Media
ISBN: 0387959246
Category : Science
Languages : en
Pages : 420
Book Description
Thematerialsusedinmanufacturingtheaerospace,aircraft,automobile,andnuclear parts have inherent aws that may grow under uctuating load environments during the operational phase of the structural hardware. The design philosophy, material selection, analysis approach, testing, quality control, inspection, and manufacturing are key elements that can contribute to failure prevention and assure a trouble-free structure. To have a robust structure, it must be designed to withstand the envir- mental load throughout its service life, even when the structure has pre-existing aws or when a part of the structure has already failed. If the design philosophy of the structure is based on the fail-safe requirements, or multiple load path design, partial failure of a structural component due to crack propagation is localized and safely contained or arrested. For that reason, proper inspection technique must be scheduled for reusable parts to detect the amount and rate of crack growth, and the possible need for repairing or replacement of the part. An example of a fail-sa- designed structure with crack-arrest feature, common to all aircraft structural parts, is the skin-stiffened design con guration. However, in other cases, the design p- losophy has safe-life or single load path feature, where analysts must demonstrate that parts have adequate life during their service operation and the possibility of catastrophic failure is remote. For example, all pressurized vessels that have single load path feature are classi ed as high-risk parts. During their service operation, these tanks may develop cracks, which will grow gradually in a stable manner.
A Virtual Testing Approach for Honeycomb Sandwich Panel Joints in Aircraft Interior
Author: Ralf Seemann
Publisher: Springer Nature
ISBN: 3662602768
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
Virtual test methods can contribute to reducing the great effort for physical tests in the development of lightweight products. The present work describes an approach for virtual testing of sandwich panel joints based on the Building Block Approach and the Finite Elements Method. Building on a multitude of physical tests on sandwich materials and joints, adequate sub-models are developed, validated and synthesized to top-level models. The developed approach is eventually applied for the development of a novel sandwich panel joint.
Publisher: Springer Nature
ISBN: 3662602768
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
Virtual test methods can contribute to reducing the great effort for physical tests in the development of lightweight products. The present work describes an approach for virtual testing of sandwich panel joints based on the Building Block Approach and the Finite Elements Method. Building on a multitude of physical tests on sandwich materials and joints, adequate sub-models are developed, validated and synthesized to top-level models. The developed approach is eventually applied for the development of a novel sandwich panel joint.
Modeling and Simulation in Engineering
Author: Catalin Alexandru
Publisher: BoD – Books on Demand
ISBN: 9535100122
Category : Computers
Languages : en
Pages : 314
Book Description
This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results.
Publisher: BoD – Books on Demand
ISBN: 9535100122
Category : Computers
Languages : en
Pages : 314
Book Description
This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results.
Product Engineering
Author: Doru Talaba
Publisher: Springer Science & Business Media
ISBN: 1402082002
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
This book contains an edited version of the lectures and selected contributions presented during the Advanced Summer Institute (ASI) on "Product Engineering: Tools and Methods based on Virtual Reality" held at Chania (Greece), 30th May - 6th June 2007. The ASI was devoted to the Product Engineering field, with particular attention being given to the aspects related to Virtual Reality (VR) technologies, and their use and added value in engineering.
Publisher: Springer Science & Business Media
ISBN: 1402082002
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
This book contains an edited version of the lectures and selected contributions presented during the Advanced Summer Institute (ASI) on "Product Engineering: Tools and Methods based on Virtual Reality" held at Chania (Greece), 30th May - 6th June 2007. The ASI was devoted to the Product Engineering field, with particular attention being given to the aspects related to Virtual Reality (VR) technologies, and their use and added value in engineering.
Mechanical Response of Composites
Author: Pedro P. Camanho
Publisher: Springer Science & Business Media
ISBN: 1402085842
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
Themethodologyfordesigninghigh-performancecompositestructuresisstill evo- ing. The complexity of the response of composite materials and the dif?culties in predicting the composite material properties from the basic properties of the c- stituents result in the need for a well-planned and exhaustive test program. The recommended practice to mitigate the technological risks associated with advanced composite materials is to substantiate the performance and durability of the design in a sequence of steps known as the Building Block Approach. The Building Block Approach ensures that cost and performance objectives are met by testing greater numbers of smaller, less expensive specimens. In this way, technology risks are assessed early in the program. In addition, the knowledge acquired at a given level of structural complexity is built up before progressing to a level of increased complexity. Achieving substantiation of structural performance by testing alone can be p- hibitively expensive because of the number of specimens and components required to characterize all material systems, loading scenarios and boundary conditions. Building Block Approachprogramscan achieve signi?cant cost reductionsby se- ing a synergy between testing and analysis. The more the development relies on analysis, the less expensive it becomes. The use of advanced computational models for the prediction of the mechanical response of composite structures can replace some of the mechanical tests and can signi?cantly reduce the cost of designing with composites while providing to the engineers the information necessary to achieve an optimized design.
Publisher: Springer Science & Business Media
ISBN: 1402085842
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
Themethodologyfordesigninghigh-performancecompositestructuresisstill evo- ing. The complexity of the response of composite materials and the dif?culties in predicting the composite material properties from the basic properties of the c- stituents result in the need for a well-planned and exhaustive test program. The recommended practice to mitigate the technological risks associated with advanced composite materials is to substantiate the performance and durability of the design in a sequence of steps known as the Building Block Approach. The Building Block Approach ensures that cost and performance objectives are met by testing greater numbers of smaller, less expensive specimens. In this way, technology risks are assessed early in the program. In addition, the knowledge acquired at a given level of structural complexity is built up before progressing to a level of increased complexity. Achieving substantiation of structural performance by testing alone can be p- hibitively expensive because of the number of specimens and components required to characterize all material systems, loading scenarios and boundary conditions. Building Block Approachprogramscan achieve signi?cant cost reductionsby se- ing a synergy between testing and analysis. The more the development relies on analysis, the less expensive it becomes. The use of advanced computational models for the prediction of the mechanical response of composite structures can replace some of the mechanical tests and can signi?cantly reduce the cost of designing with composites while providing to the engineers the information necessary to achieve an optimized design.
Coupled System Pavement - Tire - Vehicle
Author: Michael Kaliske
Publisher: Springer Nature
ISBN: 3030754863
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
This book summarizes research being pursued within the Research Unit FOR 2089, funded by the German Research Foundation (DFG), the goal of which is to develop the scientific base for a paradigm shift towards dimensioning, structural realization and maintenance of pavements, and prepare road infrastructure for future requirements. It provides a coupled thermo-mechanical model for a holistic physical analysis of the pavement-tire-vehicle system: based on this model, pavement structures and materials can be optimized so that new demands become compatible with the main goal – durability of the structures and the materials. The development of these new and qualitatively improved modelling approaches requires a holistic procedure through the coupling of theoretical numerical and experimental approaches as well as an interdisciplinary and closely linked handling of the coupled pavement-tire-vehicle system. This interdisciplinary research provides a deeper understanding of the physics of the full system through complex, coupled simulation approaches and progress in terms of improved and, therefore, more durable and sustainable structures.
Publisher: Springer Nature
ISBN: 3030754863
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
This book summarizes research being pursued within the Research Unit FOR 2089, funded by the German Research Foundation (DFG), the goal of which is to develop the scientific base for a paradigm shift towards dimensioning, structural realization and maintenance of pavements, and prepare road infrastructure for future requirements. It provides a coupled thermo-mechanical model for a holistic physical analysis of the pavement-tire-vehicle system: based on this model, pavement structures and materials can be optimized so that new demands become compatible with the main goal – durability of the structures and the materials. The development of these new and qualitatively improved modelling approaches requires a holistic procedure through the coupling of theoretical numerical and experimental approaches as well as an interdisciplinary and closely linked handling of the coupled pavement-tire-vehicle system. This interdisciplinary research provides a deeper understanding of the physics of the full system through complex, coupled simulation approaches and progress in terms of improved and, therefore, more durable and sustainable structures.
Creating and Using Virtual Prototyping Software
Author: Douglass E. Post
Publisher: Addison-Wesley Professional
ISBN: 0136567010
Category : Computers
Languages : en
Pages : 401
Book Description
Develop, Deploy, and Sustain High-Performance Virtual Prototyping for Advanced R&D Organizations must reduce time-to-market, costs, and risks while producing higher-quality products that grow ever more complex. In response, many are turning to advanced software for rapidly creating and analyzing virtual prototypes, and accurately predicting the performance and behavior of the systems they represent. This requires a deep understanding of physics-based digital engineering and high-performance computing, as well as unique organizational and management skills. Now, Douglass Post and Richard Kendall bring together knowledge that engineers, scientists, developers, and managers will need to build, deploy, and sustain these specialized applications—including information previously available only in proprietary environments. Post and Kendall illuminate key issues with a detailed book-length case study based on their work at the U.S. DoD's pioneering Computational Research and Engineering Acquisition Tools and Environments (CREATE) program, which developed eleven of the field's most advanced software tools. You'll find a detailed roadmap for planning, organizing, managing, and navigating complex organizations to successful delivery; as well as detailed descriptions of each step in the process, with clear rationales and concrete examples. The authors share detailed references, a convenient glossary and bibliography, sidebars on overcoming real-world challenges, and more. The book reviews the essentials of computational engineering and science and the pivotal role of virtual prototyping. It helps readers to: Plan and manage the paradigm shift from physical to virtual prototyping Establish, execute, and evolve Agile processes for developing virtual prototyping software Understand and implement virtual prototyping tools and workflows Verify and validate prototyping systems to ensure accuracy and utility Recruit and retain a specialized workforce, and train and support users Explore additional emerging roles for virtual prototyping
Publisher: Addison-Wesley Professional
ISBN: 0136567010
Category : Computers
Languages : en
Pages : 401
Book Description
Develop, Deploy, and Sustain High-Performance Virtual Prototyping for Advanced R&D Organizations must reduce time-to-market, costs, and risks while producing higher-quality products that grow ever more complex. In response, many are turning to advanced software for rapidly creating and analyzing virtual prototypes, and accurately predicting the performance and behavior of the systems they represent. This requires a deep understanding of physics-based digital engineering and high-performance computing, as well as unique organizational and management skills. Now, Douglass Post and Richard Kendall bring together knowledge that engineers, scientists, developers, and managers will need to build, deploy, and sustain these specialized applications—including information previously available only in proprietary environments. Post and Kendall illuminate key issues with a detailed book-length case study based on their work at the U.S. DoD's pioneering Computational Research and Engineering Acquisition Tools and Environments (CREATE) program, which developed eleven of the field's most advanced software tools. You'll find a detailed roadmap for planning, organizing, managing, and navigating complex organizations to successful delivery; as well as detailed descriptions of each step in the process, with clear rationales and concrete examples. The authors share detailed references, a convenient glossary and bibliography, sidebars on overcoming real-world challenges, and more. The book reviews the essentials of computational engineering and science and the pivotal role of virtual prototyping. It helps readers to: Plan and manage the paradigm shift from physical to virtual prototyping Establish, execute, and evolve Agile processes for developing virtual prototyping software Understand and implement virtual prototyping tools and workflows Verify and validate prototyping systems to ensure accuracy and utility Recruit and retain a specialized workforce, and train and support users Explore additional emerging roles for virtual prototyping