Vertical Gallium Nitride Power Devices on Bulk Native Substrates

Vertical Gallium Nitride Power Devices on Bulk Native Substrates PDF Author: Min Sun (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 151

Get Book Here

Book Description
Lateral power devices based on AlGaN/GaN hetero-structures have achieved excellent performance in the medium power range applications. However for higher voltage higher current switches, a vertical structure is preferred since its die area does not depend on the breakdown voltage. This thesis studies vertical GaN power diodes and transistors grown on bulk GaN substrates. The first part of the thesis studies the PiN diode. Low p-GaN ohmic contact resistance is obtained through annealing in oxygen ambient. The breakdown voltage reaches 1200 V with optimized field plate design. The resistance components of the PiN diodes are also analyzed in this part of the thesis. The second half of the thesis presents a novel vertical power FinFET design with only n-GaN epi-layers. One of the key fabrication processes required for this device structure is to achieve a smooth vertical fin sidewall by combining dry/wet etch. The normally-off power FinFET demonstrates excellent performances without the need of p-GaN layer or material regrowth. With the optimization of edge termination structures, 800 V blocking voltage was achieved. A further reduction of on resistance is achieved by increasing the cap layer doping. Switching characteristics are investigated by capacitance measurements. The thesis concludes with the demonstration of spalling off the bulk GaN substrate after device fabrication. Thanks to the substrate spalling technology, the on resistance of the device can be further reduced and the bulk GaN substrate could possibly be reused to save cost.

Vertical Gallium Nitride Power Devices on Bulk Native Substrates

Vertical Gallium Nitride Power Devices on Bulk Native Substrates PDF Author: Min Sun (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 151

Get Book Here

Book Description
Lateral power devices based on AlGaN/GaN hetero-structures have achieved excellent performance in the medium power range applications. However for higher voltage higher current switches, a vertical structure is preferred since its die area does not depend on the breakdown voltage. This thesis studies vertical GaN power diodes and transistors grown on bulk GaN substrates. The first part of the thesis studies the PiN diode. Low p-GaN ohmic contact resistance is obtained through annealing in oxygen ambient. The breakdown voltage reaches 1200 V with optimized field plate design. The resistance components of the PiN diodes are also analyzed in this part of the thesis. The second half of the thesis presents a novel vertical power FinFET design with only n-GaN epi-layers. One of the key fabrication processes required for this device structure is to achieve a smooth vertical fin sidewall by combining dry/wet etch. The normally-off power FinFET demonstrates excellent performances without the need of p-GaN layer or material regrowth. With the optimization of edge termination structures, 800 V blocking voltage was achieved. A further reduction of on resistance is achieved by increasing the cap layer doping. Switching characteristics are investigated by capacitance measurements. The thesis concludes with the demonstration of spalling off the bulk GaN substrate after device fabrication. Thanks to the substrate spalling technology, the on resistance of the device can be further reduced and the bulk GaN substrate could possibly be reused to save cost.

Gallium Nitride Power Devices

Gallium Nitride Power Devices PDF Author: Hongyu Yu
Publisher: CRC Press
ISBN: 1351767607
Category : Science
Languages : en
Pages : 301

Get Book Here

Book Description
GaN is considered the most promising material candidate in next-generation power device applications, owing to its unique material properties, for example, bandgap, high breakdown field, and high electron mobility. Therefore, GaN power device technologies are listed as the top priority to be developed in many countries, including the United States, the European Union, Japan, and China. This book presents a comprehensive overview of GaN power device technologies, for example, material growth, property analysis, device structure design, fabrication process, reliability, failure analysis, and packaging. It provides useful information to both students and researchers in academic and related industries working on GaN power devices. GaN wafer growth technology is from Enkris Semiconductor, currently one of the leading players in commercial GaN wafers. Chapters 3 and 7, on the GaN transistor fabrication process and GaN vertical power devices, are edited by Dr. Zhihong Liu, who has been working on GaN devices for more than ten years. Chapters 2 and 5, on the characteristics of polarization effects and the original demonstration of AlGaN/GaN heterojunction field-effect transistors, are written by researchers from Southwest Jiaotong University. Chapters 6, 8, and 9, on surface passivation, reliability, and package technologies, are edited by a group of researchers from the Southern University of Science and Technology of China.

GaN-based Vertical Power Devices

GaN-based Vertical Power Devices PDF Author: Yuhao Zhang (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 170

Get Book Here

Book Description
Power electronics based on Gallium Nitride (GaN) is expected to significantly reduce the losses in power conversion circuits and increase the power density. This makes GaN devices very exciting candidates for next-generation power electronics, for the applications in electric vehicles, data centers, high-power and high-frequency communications. Currently, both lateral and vertical structures are considered for GaN power devices. In particular, vertical GaN power devices have attracted significant attention recently, due to the potential for achieving high breakdown voltage and current levels without enlarging the chip size. In addition, these vertical devices show superior thermal performance than their lateral counterparts. This PhD thesis addresses several key obstacles in developing vertical GaN power devices. The commercialization of vertical GaN power devices has been hindered by the high cost of bulk GaN. The first project in this PhD thesis demonstrated the feasibility of making vertical devices on a low-cost silicon (Si) substrate for the first time. The demonstrated high performance shows the great potential of low-cost vertical GaN-on-Si devices for 600-V level high-current and high-power applications. This thesis has also studied the origin of the off-state leakage current in vertical GaN pn diodes on Si, sapphire and GaN substrates, by experiments, analytical calculations and TCAD simulations. Variable-range-hopping through threading dislocations was identified as the main off-state leakage mechanism in these devices. The design space of leakage current of vertical GaN devices has been subsequently derived. Thirdly, a novel GaN vertical Schottky rectifier with trench MIS structures and trench field rings was demonstrated. The new structure greatly enhanced the reverse blocking characteristics while maintaining a Schottky-like good forward conduction. This new device shows great potential for using advanced vertical Schottky rectifiers for high-power and high-frequency applications. Finally, we investigated a fundamental and significant challenge for GaN power devices: the lack of reliable and generally useable patterned pn junctions. Two approaches have been proposed to make lateral patterned pn junctions. Two devices, junction barrier Schottky devices and super-junction devices, have been designed and optimized. Preliminary experimental results were also demonstrated for the feasibility of making patterned pn junctions and fabricating novel power devices.

Gallium Nitride Vertical Devices for High-power and High-frequency Applications

Gallium Nitride Vertical Devices for High-power and High-frequency Applications PDF Author: Siwei Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Gallium nitride (GaN) has gained considerable interest in the areas of power electronics and radio frequency (RF) devices in recent years due to its significantly higher material figure-of-merits (FOMs) than silicon (Si). The capability of operating faster as power switches also overwhelms another wide-bandgap contender, silicon carbide (SiC), especially for applications at ~600-1200 V level. GaN devices with a lateral topology such as high electron mobility transistors (HEMTs) have been extensively studied, while the development of vertical devices on high-quality free-standing GaN substrates is opening new opportunities towards improved power handling capability in high-power applications. There are still science and technology issues associated with GaN that limit its applications in high-power scenarios. One of the fundamental properties is its avalanche behavior, which is expected to be considered as a benchmark for the material but was rarely seen in GaN devices grown on foreign substrates, including sapphire, Si and SiC. Avalanche is observed and gaining increasing attention recently with the improvement of GaN-on-GaN substrate, especially in diodes. Several issues of GaN in high-power and high-speed applications are addressed in the present work. Edge terminations play a vital role in GaN devices targeting a high voltage range, and enable avalanche by optimizing the electric filed distribution, eliminating peak electric field at device edges. An ion-compensated moat etch structure is studied on GaN vertical p-n diodes. Parameters including moat etching depth and ion implantation dose are optimized. P-n diodes with a breakdown voltage (V[subscript BR]) of 1500 V and a specific on-state resistance (R[subscript ON,sp]) of 0.7 m[omega]·cm2 is demonstrated with the optimized structure, showing a device FOM of 3.2 GW·cm−2 and avalanche behavior. With avalanche performance as a prerequisite confirmed on vertical p-n diodes on bulk GaN substrates with dislocation density ranging from 1e4 cm−2 to 1e6 cm−2, the effect of dislocation density on device behavior, especially off-state leakage current is experimentally and studied in detail. The leakage mechanism is analyzed by considering its relationship to electric field and temperature. Lower leakage could be achieved on the substrate with 1e4 cm−2 dislocation density, with variable-range-hopping (VRH) procedure dominating low electric field range and Poole-Frenkel (PF) effect dominating the higher part, while VRH and other more trap-related processes may play more roles on the substrate with 1e6 cm−2 dislocation density. Large current capability is another factor for high-power applications. A DC current up to 50 A is successfully demonstrated on large-area p-n diodes by applying backside gold-to-gold thermal compression bonding. A successful scaling-up is achieved with essential factors studied. There have been few works on the RF performance of GaN vertical devices though the lateral RF devices have been widely explored. To study RF properties of GaN vertical devices, a Silvaco TCAD simulation model is established for nitride (N)-polar GaN current aperture vertical electron transistor (CAVET) based on a fitting of N-polar lateral HEMT experimental results. DC and RF properties of an N-polar CAVET are simulated, and a maximum output power of 15 W·mm−1 is expected. To experimentally demonstrate RF characteristics of a CAVET, the 1st-generation RF CAVET is then built on gallium (Ga)-polar substrate. Based on the DC characteristics, a current gain cutoff frequency (fT) at ~13 GHz is expected.

Vertical Gallium Nitride PowerDevices: Fabrication and Characterisation

Vertical Gallium Nitride PowerDevices: Fabrication and Characterisation PDF Author: Rico Hentschel
Publisher: BoD – Books on Demand
ISBN: 3752641762
Category : Science
Languages : en
Pages : 156

Get Book Here

Book Description
Efficient power conversion is essential to face the continuously increasing energy consumption of our society. GaN based vertical power field effect transistors provide excellent performance figures for power-conversion switches, due to their capability of handling high voltages and current densities with very low area consumption. This work focuses on a vertical trench gate metal oxide semiconductor field effect transistor (MOSFET) with conceptional advantages in a device fabrication preceded GaN epitaxy and enhancement mode characteristics. The functional layer stack comprises from the bottom an n+/n--drift/p-body/n+-source GaN layer sequence. Special attention is paid to the Mg doping of the p-GaN body layer, which is a complex topic by itself. Hydrogen passivation of magnesium plays an essential role, since only the active (hydrogen-free) Mg concentration determines the threshold voltage of the MOSFET and the blocking capability of the body diode. Fabrication specific challenges of the concept are related to the complex integration, formation of ohmic contacts to the functional layers, the specific implementation and processing scheme of the gate trench module and the lateral edge termination. The maximum electric field, which was achieved in the pn- junction of the body diode of the MOSFET is estimated to be around 2.1 MV/cm. From double-sweep transfer measurements with relatively small hysteresis, steep subthreshold slope and a threshold voltage of 3 - 4 V a reasonably good Al2O3/GaN interface quality is indicated. In the conductive state a channel mobility of around 80 - 100 cm2/Vs is estimated. This value is comparable to device with additional overgrowth of the channel. Further enhancement of the OFF-state and ON-state characteristics is expected for optimization of the device termination and the high-k/GaN interface of the vertical trench gate, respectively. From the obtained results and dependencies key figures of an area efficient and competitive device design with thick drift layer is extrapolated. Finally, an outlook is given and advancement possibilities as well as technological limits are discussed.

Gallium Nitride and Silicon Carbide Power Technologies 7

Gallium Nitride and Silicon Carbide Power Technologies 7 PDF Author: M. Dudley
Publisher: The Electrochemical Society
ISBN: 1607688247
Category :
Languages : en
Pages : 297

Get Book Here

Book Description


Development of Vertical Bulk Gallium Nitride Power Devices

Development of Vertical Bulk Gallium Nitride Power Devices PDF Author: Ayrton D. Muñoz
Publisher:
ISBN:
Category :
Languages : en
Pages : 92

Get Book Here

Book Description
Gallium nitride (GaN) is a promising material for power electronics due to its outstanding properties, such as high critical electric field and large bandgap. Despite its superior intrinsic properties, fabrication processes and technology for vertical GaN power electronics is still not as mature as in conventional materials. This thesis covers three aspects of vertical power devices on bulk GaN to increase their reliability and performance. The first is the breakdown behavior of GaN under high electric fields. Vertical Schottky diodes with multi-finger anodes are simulated, fabricated and characterized. Evidence of impact ionization and signs of avalanche breakdown are shown. The second aspect is scalable fabrication technologies for vertical power FinFETs. Key processing stesps are refined and demonstrated on large-area devices. The final topic covered is GaN superjunction (SJ) technology in the context vertical power FinFETs. The SJ FinFET concept is first introduced then an underutilized method for p-type doping GaN is explored as an alternative to conventional p-type regrowth and ion implantation. Finally, the proposed GaN SJ FinFET is investigated with simulations. Various standard SJ parameters are optimized and a novel electric field management technique is proposed.

Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion

Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion PDF Author: Gaudenzio Meneghesso
Publisher: Springer
ISBN: 331977994X
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
This book demonstrates to readers why Gallium Nitride (GaN) transistors have a superior performance as compared to the already mature Silicon technology. The new GaN-based transistors here described enable both high frequency and high efficiency power conversion, leading to smaller and more efficient power systems. Coverage includes i) GaN substrates and device physics; ii) innovative GaN -transistors structure (lateral and vertical); iii) reliability and robustness of GaN-power transistors; iv) impact of parasitic on GaN based power conversion, v) new power converter architectures and vi) GaN in switched mode power conversion. Provides single-source reference to Gallium Nitride (GaN)-based technologies, from the material level to circuit level, both for power conversions architectures and switched mode power amplifiers; Demonstrates how GaN is a superior technology for switching devices, enabling both high frequency, high efficiency and lower cost power conversion; Enables design of smaller, cheaper and more efficient power supplies.

Wide Bandgap Semiconductors for Power Electronics

Wide Bandgap Semiconductors for Power Electronics PDF Author: Peter Wellmann
Publisher: John Wiley & Sons
ISBN: 3527346716
Category : Technology & Engineering
Languages : en
Pages : 743

Get Book Here

Book Description
Wide Bandgap Semiconductors for Power Electronic A guide to the field of wide bandgap semiconductor technology Wide Bandgap Semiconductors for Power Electronics is a comprehensive and authoritative guide to wide bandgap materials silicon carbide, gallium nitride, diamond and gallium(III) oxide. With contributions from an international panel of experts, the book offers detailed coverage of the growth of these materials, their characterization, and how they are used in a variety of power electronics devices such as transistors and diodes and in the areas of quantum information and hybrid electric vehicles. The book is filled with the most recent developments in the burgeoning field of wide bandgap semiconductor technology and includes information from cutting-edge semiconductor companies as well as material from leading universities and research institutions. By taking both scholarly and industrial perspectives, the book is designed to be a useful resource for scientists, academics, and corporate researchers and developers. This important book: Presents a review of wide bandgap materials and recent developments Links the high potential of wide bandgap semiconductors with the technological implementation capabilities Offers a unique combination of academic and industrial perspectives Meets the demand for a resource that addresses wide bandgap materials in a comprehensive manner Written for materials scientists, semiconductor physicists, electrical engineers, Wide Bandgap Semiconductors for Power Electronics provides a state of the art guide to the technology and application of SiC and related wide bandgap materials.

Power GaN Devices

Power GaN Devices PDF Author: Matteo Meneghini
Publisher: Springer
ISBN: 3319431994
Category : Technology & Engineering
Languages : en
Pages : 383

Get Book Here

Book Description
This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.