Author: Samir Lemeš
Publisher: Univerza v Ljubljani, Fakulteta za strojništvo
ISBN:
Category :
Languages : en
Pages : 178
Book Description
Validation is the subjective process that determines the accuracy with which the mathematical model describes the actual physical phenomenon. This research was conducted in order to validate the use of finite element analysis for springback compensation in 3D scanning of sheet metal objects. The measurement uncertainty analysis was used to compare the digitized 3D model of deformed sheet metal product with the 3D model obtained by simulated deformation. The influence factors onto 3D scanning and numerical simulation processes are identified and analysed. It is shown that major contribution to measurement uncertainty comes from scanning method and deviations of parts due to manufacturing technology. The analysis results showed that numerical methods, such as finite element method, can successfully be used in computer aided quality control and automated inspection of manufactured parts.
Validation of Numerical Simulations by Digital Scanning of 3D Sheet Metal Objects
Author: Samir Lemeš
Publisher: Univerza v Ljubljani, Fakulteta za strojništvo
ISBN:
Category :
Languages : en
Pages : 178
Book Description
Validation is the subjective process that determines the accuracy with which the mathematical model describes the actual physical phenomenon. This research was conducted in order to validate the use of finite element analysis for springback compensation in 3D scanning of sheet metal objects. The measurement uncertainty analysis was used to compare the digitized 3D model of deformed sheet metal product with the 3D model obtained by simulated deformation. The influence factors onto 3D scanning and numerical simulation processes are identified and analysed. It is shown that major contribution to measurement uncertainty comes from scanning method and deviations of parts due to manufacturing technology. The analysis results showed that numerical methods, such as finite element method, can successfully be used in computer aided quality control and automated inspection of manufactured parts.
Publisher: Univerza v Ljubljani, Fakulteta za strojništvo
ISBN:
Category :
Languages : en
Pages : 178
Book Description
Validation is the subjective process that determines the accuracy with which the mathematical model describes the actual physical phenomenon. This research was conducted in order to validate the use of finite element analysis for springback compensation in 3D scanning of sheet metal objects. The measurement uncertainty analysis was used to compare the digitized 3D model of deformed sheet metal product with the 3D model obtained by simulated deformation. The influence factors onto 3D scanning and numerical simulation processes are identified and analysed. It is shown that major contribution to measurement uncertainty comes from scanning method and deviations of parts due to manufacturing technology. The analysis results showed that numerical methods, such as finite element method, can successfully be used in computer aided quality control and automated inspection of manufactured parts.
Modelling and Simulation of Sheet Metal Forming Processes
Author: Marta C. Oliveira
Publisher: MDPI
ISBN: 3039285564
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.
Publisher: MDPI
ISBN: 3039285564
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.
Microforming Technology
Author: Zhengyi Jiang
Publisher: Academic Press
ISBN: 0128112131
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Microforming Technology: Theory, Simulation and Practice addresses all aspects of micromanufacturing technology, presenting detailed technical information and the latest research developments. The book covers fundamentals, theory, simulation models, equipment and tools design, practical micromanufacturing procedures, and micromanufacturing-related supporting systems, such as laser heating system, hydraulic system and quality evaluation systems. Newly developed technology, including micro wedge rolling, micro flexible rolling and micro hydromechanical deep drawing, as well as traditional methods, such as micro deep drawing, micro bending and micro ultrathin strip rolling, are discussed. This will be a highly valuable resource for those involved in the use, study and design of micro products and micromanufacturing technologies, including engineers, scientists, academics and graduate students. - Provides an accessible introduction to the fundamental theories of microforming, size effects, and scaling laws - Includes explanations of the procedures, equipment, and tools for all common microforming technologies - Explains the numerical modeling procedures for 7 different types of microforming
Publisher: Academic Press
ISBN: 0128112131
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Microforming Technology: Theory, Simulation and Practice addresses all aspects of micromanufacturing technology, presenting detailed technical information and the latest research developments. The book covers fundamentals, theory, simulation models, equipment and tools design, practical micromanufacturing procedures, and micromanufacturing-related supporting systems, such as laser heating system, hydraulic system and quality evaluation systems. Newly developed technology, including micro wedge rolling, micro flexible rolling and micro hydromechanical deep drawing, as well as traditional methods, such as micro deep drawing, micro bending and micro ultrathin strip rolling, are discussed. This will be a highly valuable resource for those involved in the use, study and design of micro products and micromanufacturing technologies, including engineers, scientists, academics and graduate students. - Provides an accessible introduction to the fundamental theories of microforming, size effects, and scaling laws - Includes explanations of the procedures, equipment, and tools for all common microforming technologies - Explains the numerical modeling procedures for 7 different types of microforming
Analysis and Optimization of Sheet Metal Forming Processes
Author: Amrut Mulay
Publisher: CRC Press
ISBN: 1040027318
Category : Technology & Engineering
Languages : en
Pages : 371
Book Description
Analysis and Optimization of Sheet Metal Forming Processes comprehensively covers sheet metal forming, from choosing materials, tools and the forming method to optimising the entire process through finite element analysis and computer-aided engineering. Beginning with an introduction to sheet metal forming, the book provides a guide to the various techniques used within the industry. It provides a discussion of sheet metal properties relevant to forming processes, such as ductility, formability, and strength, and analyses how materials should be selected with factors including material properties, cost, and availability. Forming processes including shearing, bending, deep drawing, and stamping are also discussed, along with tools such as dies, punches, and moulds. Simulation and modelling are key to optimising the sheet metal forming process, including finite element analysis and computer-aided engineering. Other topics included are quality control, design, industry applications, and future trends. The book will be of interest to students and professionals working in the field of sheet metal and metal forming, materials science, mechanical engineering, and metallurgy.
Publisher: CRC Press
ISBN: 1040027318
Category : Technology & Engineering
Languages : en
Pages : 371
Book Description
Analysis and Optimization of Sheet Metal Forming Processes comprehensively covers sheet metal forming, from choosing materials, tools and the forming method to optimising the entire process through finite element analysis and computer-aided engineering. Beginning with an introduction to sheet metal forming, the book provides a guide to the various techniques used within the industry. It provides a discussion of sheet metal properties relevant to forming processes, such as ductility, formability, and strength, and analyses how materials should be selected with factors including material properties, cost, and availability. Forming processes including shearing, bending, deep drawing, and stamping are also discussed, along with tools such as dies, punches, and moulds. Simulation and modelling are key to optimising the sheet metal forming process, including finite element analysis and computer-aided engineering. Other topics included are quality control, design, industry applications, and future trends. The book will be of interest to students and professionals working in the field of sheet metal and metal forming, materials science, mechanical engineering, and metallurgy.
Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming
Author: Ping Hu
Publisher: Springer Science & Business Media
ISBN: 1447140990
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
Over the last 15 years, the application of innovative steel concepts in the automotive industry has increased steadily. Numerical simulation technology of hot forming of high-strength steel allows engineers to modify the formability of hot forming steel metals and to optimize die design schemes. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming focuses on hot and cold forming theories, numerical methods, relative simulation and experiment techniques for high-strength steel forming and die design in the automobile industry. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming introduces the general theories of cold forming, then expands upon advanced hot forming theories and simulation methods, including: the forming process, constitutive equations, hot boundary constraint treatment, and hot forming equipment and experiments. Various calculation methods of cold and hot forming, based on the authors’ experience in commercial CAE software for sheet metal forming, are provided, as well as a discussion of key issues, such as hot formability with quenching process, die design and cooling channel design in die, and formability experiments. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming will enable readers to develop an advanced knowledge of hot forming, as well as to apply hot forming theories, calculation methods and key techniques to direct their die design. It is therefore a useful reference for students and researchers, as well as automotive engineers.
Publisher: Springer Science & Business Media
ISBN: 1447140990
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
Over the last 15 years, the application of innovative steel concepts in the automotive industry has increased steadily. Numerical simulation technology of hot forming of high-strength steel allows engineers to modify the formability of hot forming steel metals and to optimize die design schemes. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming focuses on hot and cold forming theories, numerical methods, relative simulation and experiment techniques for high-strength steel forming and die design in the automobile industry. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming introduces the general theories of cold forming, then expands upon advanced hot forming theories and simulation methods, including: the forming process, constitutive equations, hot boundary constraint treatment, and hot forming equipment and experiments. Various calculation methods of cold and hot forming, based on the authors’ experience in commercial CAE software for sheet metal forming, are provided, as well as a discussion of key issues, such as hot formability with quenching process, die design and cooling channel design in die, and formability experiments. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming will enable readers to develop an advanced knowledge of hot forming, as well as to apply hot forming theories, calculation methods and key techniques to direct their die design. It is therefore a useful reference for students and researchers, as well as automotive engineers.
Modeling of Metal Forming and Machining Processes
Author: Prakash Mahadeo Dixit
Publisher: Springer Science & Business Media
ISBN: 1848001894
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
Written by authorities in the subject, this book provides a complete treatment of metal forming and machining by using the computational techniques FEM, fuzzy set theory and neural networks as modelling tools. The algorithms and solved examples included make this book of value to postgraduates, senior undergraduates, and lecturers and researchers in these fields. Research and development engineers and consultants for the manufacturing industry will also find it of use.
Publisher: Springer Science & Business Media
ISBN: 1848001894
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
Written by authorities in the subject, this book provides a complete treatment of metal forming and machining by using the computational techniques FEM, fuzzy set theory and neural networks as modelling tools. The algorithms and solved examples included make this book of value to postgraduates, senior undergraduates, and lecturers and researchers in these fields. Research and development engineers and consultants for the manufacturing industry will also find it of use.
Finite Element Method
Author: Păcurar Răzvan
Publisher: BoD – Books on Demand
ISBN: 9535138499
Category : Computers
Languages : en
Pages : 324
Book Description
The book entitled Finite Element Method: Simulation, Numerical Analysis, and Solution Techniques aims to present results of the applicative research performed using FEM in various engineering fields by researchers affiliated to well-known universities. The book has a profound interdisciplinary character and is mainly addressed to researchers, PhD students, graduate and undergraduate students, teachers, engineers, as well as all other readers interested in the engineering applications of FEM. I am confident that readers will find information and challenging topics of high academic and scientific level, which will encourage them to enhance their knowledge in this engineering domain having a continuous expansion. The applications presented in this book cover a broad spectrum of finite element applications starting from mechanical, electrical, or energy production and finishing with the successful simulation of severe meteorological phenomena.
Publisher: BoD – Books on Demand
ISBN: 9535138499
Category : Computers
Languages : en
Pages : 324
Book Description
The book entitled Finite Element Method: Simulation, Numerical Analysis, and Solution Techniques aims to present results of the applicative research performed using FEM in various engineering fields by researchers affiliated to well-known universities. The book has a profound interdisciplinary character and is mainly addressed to researchers, PhD students, graduate and undergraduate students, teachers, engineers, as well as all other readers interested in the engineering applications of FEM. I am confident that readers will find information and challenging topics of high academic and scientific level, which will encourage them to enhance their knowledge in this engineering domain having a continuous expansion. The applications presented in this book cover a broad spectrum of finite element applications starting from mechanical, electrical, or energy production and finishing with the successful simulation of severe meteorological phenomena.
Condition Monitoring and Control for Intelligent Manufacturing
Author: Lihui Wang
Publisher: Springer Science & Business Media
ISBN: 1846282691
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Condition modelling and control is a technique used to enable decision-making in manufacturing processes of interest to researchers and practising engineering. Condition Monitoring and Control for Intelligent Manufacturing will be bought by researchers and graduate students in manufacturing and control and engineering, as well as practising engineers in industries such as automotive and packaging manufacturing.
Publisher: Springer Science & Business Media
ISBN: 1846282691
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Condition modelling and control is a technique used to enable decision-making in manufacturing processes of interest to researchers and practising engineering. Condition Monitoring and Control for Intelligent Manufacturing will be bought by researchers and graduate students in manufacturing and control and engineering, as well as practising engineers in industries such as automotive and packaging manufacturing.
Finite Element Method in Manufacturing Processes
Author: J. Paulo Davim
Publisher: Wiley-ISTE
ISBN: 9781848212824
Category : Mathematics
Languages : en
Pages : 0
Book Description
The finite element method (FEM) has become the main instrument for simulating manufacturing processes, owing to the fact that it can replace experimental approaches to the study of manufacturing processes in many cases. This book describes some of the research fundamentals as well as advances in the application of FEM in such manufacturing processes as machining, bulk deformation, sheet metal forming, surface treatments, micromanufacturing processes, and more. It is a highly useful reference for academics, researchers, engineers and other professionals in manufacturing and computational mechanics.
Publisher: Wiley-ISTE
ISBN: 9781848212824
Category : Mathematics
Languages : en
Pages : 0
Book Description
The finite element method (FEM) has become the main instrument for simulating manufacturing processes, owing to the fact that it can replace experimental approaches to the study of manufacturing processes in many cases. This book describes some of the research fundamentals as well as advances in the application of FEM in such manufacturing processes as machining, bulk deformation, sheet metal forming, surface treatments, micromanufacturing processes, and more. It is a highly useful reference for academics, researchers, engineers and other professionals in manufacturing and computational mechanics.
Sheet Metal Forming Processes
Author: Dorel Banabic
Publisher: Springer Science & Business Media
ISBN: 3540881131
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
The concept of virtual manufacturing has been developed in order to increase the industrial performances, being one of the most ef cient ways of reducing the m- ufacturing times and improving the quality of the products. Numerical simulation of metal forming processes, as a component of the virtual manufacturing process, has a very important contribution to the reduction of the lead time. The nite element method is currently the most widely used numerical procedure for s- ulating sheet metal forming processes. The accuracy of the simulation programs used in industry is in uenced by the constitutive models and the forming limit curves models incorporated in their structure. From the above discussion, we can distinguish a very strong connection between virtual manufacturing as a general concept, ?nite element method as a numerical analysis instrument and constitutive laws,aswellas forming limit curves as a speci city of the sheet metal forming processes. Consequently, the material modeling is strategic when models of reality have to be built. The book gives a synthetic presentation of the research performed in the eld of sheet metal forming simulation during more than 20 years by the members of three international teams: the Research Centre on Sheet Metal Forming—CERTETA (Technical University of Cluj-Napoca, Romania); AutoForm Company from Zürich, Switzerland and VOLVO automotive company from Sweden. The rst chapter presents an overview of different Finite Element (FE) formu- tions used for sheet metal forming simulation, now and in the past.
Publisher: Springer Science & Business Media
ISBN: 3540881131
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
The concept of virtual manufacturing has been developed in order to increase the industrial performances, being one of the most ef cient ways of reducing the m- ufacturing times and improving the quality of the products. Numerical simulation of metal forming processes, as a component of the virtual manufacturing process, has a very important contribution to the reduction of the lead time. The nite element method is currently the most widely used numerical procedure for s- ulating sheet metal forming processes. The accuracy of the simulation programs used in industry is in uenced by the constitutive models and the forming limit curves models incorporated in their structure. From the above discussion, we can distinguish a very strong connection between virtual manufacturing as a general concept, ?nite element method as a numerical analysis instrument and constitutive laws,aswellas forming limit curves as a speci city of the sheet metal forming processes. Consequently, the material modeling is strategic when models of reality have to be built. The book gives a synthetic presentation of the research performed in the eld of sheet metal forming simulation during more than 20 years by the members of three international teams: the Research Centre on Sheet Metal Forming—CERTETA (Technical University of Cluj-Napoca, Romania); AutoForm Company from Zürich, Switzerland and VOLVO automotive company from Sweden. The rst chapter presents an overview of different Finite Element (FE) formu- tions used for sheet metal forming simulation, now and in the past.