Validation Concerns for Dry Storage of Foreign Research Reactor Spent Nuclear Fuel

Validation Concerns for Dry Storage of Foreign Research Reactor Spent Nuclear Fuel PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Validation Concerns for Dry Storage of Foreign Research Reactor Spent Nuclear Fuel

Validation Concerns for Dry Storage of Foreign Research Reactor Spent Nuclear Fuel PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Storage of Spent Nuclear Fuel

Storage of Spent Nuclear Fuel PDF Author: International Atomic Energy Agency
Publisher:
ISBN: 9789201061195
Category : Technology & Engineering
Languages : en
Pages :

Get Book Here

Book Description
This publication is a revision by amendment of IAEA Safety Standards Series No. SSG-15 and provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facility and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods beyond the original design lifetime of the storage facility that have become necessary owing to delays in the development of disposal facilities and the reduction in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. Guidance is provided on all stages in the lifetime of a spent fuel storage facility, from planning through siting and design to operation and decommissioning. The revision was undertaken by amending, adding and/or deleting specific paragraphs addressing recommendations and findings from studying the accident at the Fukushima Daiichi nuclear power plant in Japan.

MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT.

MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL.

OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

Proceedings of the Topical Meeting on DOE Spent Nuclear Fuel

Proceedings of the Topical Meeting on DOE Spent Nuclear Fuel PDF Author:
Publisher: American Nuclear Society
ISBN:
Category : Political Science
Languages : en
Pages : 626

Get Book Here

Book Description


Going the Distance?

Going the Distance? PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309164826
Category : Science
Languages : en
Pages : 355

Get Book Here

Book Description
This new report from the National Research Council's Nuclear and Radiation Studies Board (NRSB) and the Transportation Research Board reviews the risks and technical and societal concerns for the transport of spent nuclear fuel and high-level radioactive waste in the United States. Shipments are expected to increase as the U.S. Department of Energy opens a repository for spent fuel and high-level waste at Yucca Mountain, and the commercial nuclear industry considers constructing a facility in Utah for temporary storage of spent fuel from some of its nuclear waste plants. The report concludes that there are no fundamental technical barriers to the safe transport of spent nuclear fuel and high-level radioactive and the radiological risks of transport are well understood and generally low. However, there are a number of challenges that must be addressed before large-quantity shipping programs can be implemented successfully. Among these are managing "social" risks. The report does not provide an examination of the security of shipments against malevolent acts but recommends that such an examination be carried out.

Practices for Interim Storage of Research Reactor Spent Nuclear Fuel

Practices for Interim Storage of Research Reactor Spent Nuclear Fuel PDF Author: IAEA
Publisher: International Atomic Energy Agency
ISBN: 9201233221
Category : Technology & Engineering
Languages : en
Pages : 139

Get Book Here

Book Description
This publication provides an introduction to the management of research reactor spent nuclear fuel (RRSNF). Five key areas are discussed: types of RRSNF, characterization data, wet storage considerations, dry storage considerations, and lessons learned and current practices. Information on internationally accepted standards as well as information on aspects such as drying treatment and surveillance programmes are presented, as well as suggestions for further optimization of effective and safe storage of RRSNF through the application of new approaches. The intended users of this publication include industry professionals at operating research reactors and at RRSNF storage facilities who need to identify the most suitable approach for interim storage of spent fuel.

Foreign Experience on Effects of Extended Dry Storage on the Integrity of Spent Nuclear Fuel

Foreign Experience on Effects of Extended Dry Storage on the Integrity of Spent Nuclear Fuel PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 102

Get Book Here

Book Description
This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States (CIS)). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

Safety Assessment for Spent Fuel Storage Facilities

Safety Assessment for Spent Fuel Storage Facilities PDF Author: International Atomic Energy Agency
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 88

Get Book Here

Book Description
Describes international approaches for maintaining fuel subcritical, removing residual heat, providing radiation protection and containing radioactive materials for the lifetime of a facility. It is intended to provide details on the safety assessment of interim spent fuel storage facilities that are not an integral part of an operating plant.

Uranium Enrichment and Nuclear Weapon Proliferation

Uranium Enrichment and Nuclear Weapon Proliferation PDF Author: Allan S. Krass
Publisher: Routledge
ISBN: 100020054X
Category : Political Science
Languages : en
Pages : 325

Get Book Here

Book Description
Originally published in 1983, this book presents both the technical and political information necessary to evaluate the emerging threat to world security posed by recent advances in uranium enrichment technology. Uranium enrichment has played a relatively quiet but important role in the history of efforts by a number of nations to acquire nuclear weapons and by a number of others to prevent the proliferation of nuclear weapons. For many years the uranium enrichment industry was dominated by a single method, gaseous diffusion, which was technically complex, extremely capital-intensive, and highly inefficient in its use of energy. As long as this remained true, only the richest and most technically advanced nations could afford to pursue the enrichment route to weapon acquisition. But during the 1970s this situation changed dramatically. Several new and far more accessible enrichment techniques were developed, stimulated largely by the anticipation of a rapidly growing demand for enrichment services by the world-wide nuclear power industry. This proliferation of new techniques, coupled with the subsequent contraction of the commercial market for enriched uranium, has created a situation in which uranium enrichment technology might well become the most important contributor to further nuclear weapon proliferation. Some of the issues addressed in this book are: A technical analysis of the most important enrichment techniques in a form that is relevant to analysis of proliferation risks; A detailed projection of the world demand for uranium enrichment services; A summary and critique of present institutional non-proliferation arrangements in the world enrichment industry, and An identification of the states most likely to pursue the enrichment route to acquisition of nuclear weapons.