Using Predictive Analytics to Improve Healthcare Outcomes

Using Predictive Analytics to Improve Healthcare Outcomes PDF Author: John W. Nelson
Publisher: John Wiley & Sons
ISBN: 1119747805
Category : Mathematics
Languages : en
Pages : 188

Get Book Here

Book Description
Using Predictive Analytics to Improve Healthcare Outcomes Winner of the American Journal of Nursing (AJN) Informatics Book of the Year Award 2021! Discover a comprehensive overview, from established leaders in the field, of how to use predictive analytics and other analytic methods for healthcare quality improvement. Using Predictive Analytics to Improve Healthcare Outcomes delivers a 16-step process to use predictive analytics to improve operations in the complex industry of healthcare. The book includes numerous case studies that make use of predictive analytics and other mathematical methodologies to save money and improve patient outcomes. The book is organized as a “how-to” manual, showing how to use existing theory and tools to achieve desired positive outcomes. You will learn how your organization can use predictive analytics to identify the most impactful operational interventions before changing operations. This includes: A thorough introduction to data, caring theory, Relationship-Based Care®, the Caring Behaviors Assurance System©, and healthcare operations, including how to build a measurement model and improve organizational outcomes. An exploration of analytics in action, including comprehensive case studies on patient falls, palliative care, infection reduction, reducing rates of readmission for heart failure, and more—all resulting in action plans allowing clinicians to make changes that have been proven in advance to result in positive outcomes. Discussions of how to refine quality improvement initiatives, including the use of “comfort” as a construct to illustrate the importance of solid theory and good measurement in adequate pain management. An examination of international organizations using analytics to improve operations within cultural context. Using Predictive Analytics to Improve Healthcare Outcomes is perfect for executives, researchers, and quality improvement staff at healthcare organizations, as well as educators teaching mathematics, data science, or quality improvement. Employ this valuable resource that walks you through the steps of managing and optimizing outcomes in your clinical care operations.

Using Predictive Analytics to Improve Healthcare Outcomes

Using Predictive Analytics to Improve Healthcare Outcomes PDF Author: John W. Nelson
Publisher: John Wiley & Sons
ISBN: 1119747805
Category : Mathematics
Languages : en
Pages : 188

Get Book Here

Book Description
Using Predictive Analytics to Improve Healthcare Outcomes Winner of the American Journal of Nursing (AJN) Informatics Book of the Year Award 2021! Discover a comprehensive overview, from established leaders in the field, of how to use predictive analytics and other analytic methods for healthcare quality improvement. Using Predictive Analytics to Improve Healthcare Outcomes delivers a 16-step process to use predictive analytics to improve operations in the complex industry of healthcare. The book includes numerous case studies that make use of predictive analytics and other mathematical methodologies to save money and improve patient outcomes. The book is organized as a “how-to” manual, showing how to use existing theory and tools to achieve desired positive outcomes. You will learn how your organization can use predictive analytics to identify the most impactful operational interventions before changing operations. This includes: A thorough introduction to data, caring theory, Relationship-Based Care®, the Caring Behaviors Assurance System©, and healthcare operations, including how to build a measurement model and improve organizational outcomes. An exploration of analytics in action, including comprehensive case studies on patient falls, palliative care, infection reduction, reducing rates of readmission for heart failure, and more—all resulting in action plans allowing clinicians to make changes that have been proven in advance to result in positive outcomes. Discussions of how to refine quality improvement initiatives, including the use of “comfort” as a construct to illustrate the importance of solid theory and good measurement in adequate pain management. An examination of international organizations using analytics to improve operations within cultural context. Using Predictive Analytics to Improve Healthcare Outcomes is perfect for executives, researchers, and quality improvement staff at healthcare organizations, as well as educators teaching mathematics, data science, or quality improvement. Employ this valuable resource that walks you through the steps of managing and optimizing outcomes in your clinical care operations.

Practical Predictive Analytics and Decisioning Systems for Medicine

Practical Predictive Analytics and Decisioning Systems for Medicine PDF Author: Gary D. Miner
Publisher: Academic Press
ISBN: 012411640X
Category : Computers
Languages : en
Pages : 1111

Get Book Here

Book Description
With the advent of electronic medical records years ago and the increasing capabilities of computers, our healthcare systems are sitting on growing mountains of data. Not only does the data grow from patient volume but the type of data we store is also growing exponentially. Practical Predictive Analytics and Decisioning Systems for Medicine provides research tools to analyze these large amounts of data and addresses some of the most pressing issues and challenges where data integrity is compromised: patient safety, patient communication, and patient information. Through the use of predictive analytic models and applications, this book is an invaluable resource to predict more accurate outcomes to help improve quality care in the healthcare and medical industries in the most cost–efficient manner.Practical Predictive Analytics and Decisioning Systems for Medicine provides the basics of predictive analytics for those new to the area and focuses on general philosophy and activities in the healthcare and medical system. It explains why predictive models are important, and how they can be applied to the predictive analysis process in order to solve real industry problems. Researchers need this valuable resource to improve data analysis skills and make more accurate and cost-effective decisions. - Includes models and applications of predictive analytics why they are important and how they can be used in healthcare and medical research - Provides real world step-by-step tutorials to help beginners understand how the predictive analytic processes works and to successfully do the computations - Demonstrates methods to help sort through data to make better observations and allow you to make better predictions

Healthcare Analytics for Quality and Performance Improvement

Healthcare Analytics for Quality and Performance Improvement PDF Author: Trevor L. Strome
Publisher: John Wiley & Sons
ISBN: 1118760158
Category : Business & Economics
Languages : en
Pages : 246

Get Book Here

Book Description
Improve patient outcomes, lower costs, reduce fraud—all with healthcare analytics Healthcare Analytics for Quality and Performance Improvement walks your healthcare organization from relying on generic reports and dashboards to developing powerful analytic applications that drive effective decision-making throughout your organization. Renowned healthcare analytics leader Trevor Strome reveals in this groundbreaking volume the true potential of analytics to harness the vast amounts of data being generated in order to improve the decision-making ability of healthcare managers and improvement teams. Examines how technology has impacted healthcare delivery Discusses the challenge facing healthcare organizations: to leverage advances in both clinical and information technology to improve quality and performance while containing costs Explores the tools and techniques to analyze and extract value from healthcare data Demonstrates how the clinical, business, and technology components of healthcare organizations (HCOs) must work together to leverage analytics Other industries are already taking advantage of big data. Healthcare Analytics for Quality and Performance Improvement helps the healthcare industry make the most of the precious data already at its fingertips for long-overdue quality and performance improvement.

Big Data Analytics in Healthcare

Big Data Analytics in Healthcare PDF Author: Anand J. Kulkarni
Publisher: Springer Nature
ISBN: 3030316726
Category : Technology & Engineering
Languages : en
Pages : 193

Get Book Here

Book Description
This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare PDF Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385

Get Book Here

Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Relationship-Based Care

Relationship-Based Care PDF Author: Mary Koloroutis, RN, MS
Publisher: Creative Health Care Management
ISBN: 1886624658
Category : Medical
Languages : en
Pages : 313

Get Book Here

Book Description
The result of Creative Health Care Management's 25 years experience in health care, this book provides health care leaders with basic concepts for transforming their care delivery system into one that is patient and family centered and built on the power of relationships. Relationship-Based Care provides a practical framework for addressing current challenges and is intended to benefit health care organizations in which commitment to care and service to patients is strong and focused. It will also prove useful in organizations searching for solutions to complex struggles with patient, staff and physician dissatisfaction; difficulty recruiting and retaining and developing talented staff members; conflicted work relationships and related quality issues. Now in it's 16th printing, Relationship-Based Care has sold over 65,000 copies world-wide. It is the winner of the American Journal of Nursing Book of the Year Award.

Healthcare Analytics Made Simple

Healthcare Analytics Made Simple PDF Author: Vikas (Vik) Kumar
Publisher: Packt Publishing Ltd
ISBN: 1787283224
Category : Computers
Languages : en
Pages : 258

Get Book Here

Book Description
Add a touch of data analytics to your healthcare systems and get insightful outcomes Key Features Perform healthcare analytics with Python and SQL Build predictive models on real healthcare data with pandas and scikit-learn Use analytics to improve healthcare performance Book Description In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples. What you will learn Gain valuable insight into healthcare incentives, finances, and legislation Discover the connection between machine learning and healthcare processes Use SQL and Python to analyze data Measure healthcare quality and provider performance Identify features and attributes to build successful healthcare models Build predictive models using real-world healthcare data Become an expert in predictive modeling with structured clinical data See what lies ahead for healthcare analytics Who this book is for Healthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare.

Measuring Caring

Measuring Caring PDF Author: John Nelson (R.N.)
Publisher: Springer Publishing Company
ISBN: 0826163513
Category : Medical
Languages : en
Pages : 462

Get Book Here

Book Description
Print+CourseSmart

Precision Public Health

Precision Public Health PDF Author: Tarun Weeramanthri
Publisher: Frontiers Media SA
ISBN: 2889455017
Category :
Languages : en
Pages : 149

Get Book Here

Book Description
Precision Public Health is a new and rapidly evolving field, that examines the application of new technologies to public health policy and practice. It draws on a broad range of disciplines including genomics, spatial data, data linkage, epidemiology, health informatics, big data, predictive analytics and communications. The hope is that these new technologies will strengthen preventive health, improve access to health care, and reach disadvantaged populations in all areas of the world. But what are the downsides and what are the risks, and how can we ensure the benefits flow to those population groups most in need, rather than simply to those individuals who can afford to pay? This is the first collection of theoretical frameworks, analyses of empirical data, and case studies to be assembled on this topic, published to stimulate debate and promote collaborative work.

Machine Learning and AI for Healthcare

Machine Learning and AI for Healthcare PDF Author: Arjun Panesar
Publisher: Apress
ISBN: 1484237994
Category : Computers
Languages : en
Pages : 390

Get Book Here

Book Description
Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.