Graph Representation Learning

Graph Representation Learning PDF Author: William L. William L. Hamilton
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141

Get Book Here

Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Graph Algorithms

Graph Algorithms PDF Author: Mark Needham
Publisher: "O'Reilly Media, Inc."
ISBN: 1492047635
Category : Computers
Languages : en
Pages : 297

Get Book Here

Book Description
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark

Graph Algorithms in the Language of Linear Algebra

Graph Algorithms in the Language of Linear Algebra PDF Author: Jeremy Kepner
Publisher: SIAM
ISBN: 9780898719918
Category : Mathematics
Languages : en
Pages : 388

Get Book Here

Book Description
The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.

Graph Machine Learning

Graph Machine Learning PDF Author: Claudio Stamile
Publisher: Packt Publishing Ltd
ISBN: 1800206755
Category : Computers
Languages : en
Pages : 338

Get Book Here

Book Description
Build machine learning algorithms using graph data and efficiently exploit topological information within your models Key Features Implement machine learning techniques and algorithms in graph data Identify the relationship between nodes in order to make better business decisions Apply graph-based machine learning methods to solve real-life problems Book Description Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks. The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use. You'll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. After covering the basics, you'll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You'll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs. By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications. What you will learn Write Python scripts to extract features from graphs Distinguish between the main graph representation learning techniques Learn how to extract data from social networks, financial transaction systems, for text analysis, and more Implement the main unsupervised and supervised graph embedding techniques Get to grips with shallow embedding methods, graph neural networks, graph regularization methods, and more Deploy and scale out your application seamlessly Who this book is for This book is for data scientists, data analysts, graph analysts, and graph professionals who want to leverage the information embedded in the connections and relations between data points to boost their analysis and model performance using machine learning. It will also be useful for machine learning developers or anyone who wants to build ML-driven graph databases. A beginner-level understanding of graph databases and graph data is required, alongside a solid understanding of ML basics. You'll also need intermediate-level Python programming knowledge to get started with this book.

Why Greatness Cannot Be Planned

Why Greatness Cannot Be Planned PDF Author: Kenneth O. Stanley
Publisher: Springer
ISBN: 3319155245
Category : Computers
Languages : en
Pages : 144

Get Book Here

Book Description
Why does modern life revolve around objectives? From how science is funded, to improving how children are educated -- and nearly everything in-between -- our society has become obsessed with a seductive illusion: that greatness results from doggedly measuring improvement in the relentless pursuit of an ambitious goal. In Why Greatness Cannot Be Planned, Stanley and Lehman begin with a surprising scientific discovery in artificial intelligence that leads ultimately to the conclusion that the objective obsession has gone too far. They make the case that great achievement can't be bottled up into mechanical metrics; that innovation is not driven by narrowly focused heroic effort; and that we would be wiser (and the outcomes better) if instead we whole-heartedly embraced serendipitous discovery and playful creativity. Controversial at its heart, yet refreshingly provocative, this book challenges readers to consider life without a destination and discovery without a compass.

Grid and Cooperative Computing - GCC 2005

Grid and Cooperative Computing - GCC 2005 PDF Author: Hai Zhuge
Publisher: Springer
ISBN: 3540322779
Category : Computers
Languages : en
Pages : 1222

Get Book Here

Book Description
This volume presents the accepted papers for the 4th International Conference onGridandCooperativeComputing(GCC2005),heldinBeijing,China,during November 30 – December 3, 2005.The conferenceseries of GCC aims to provide an international forum for the presentation and discussion of research trends on the theory, method, and design of Grid and cooperative computing as well as their scienti?c, engineering and commercial applications. It has become a major annual event in this area. The First International Conference on Grid and Cooperative Computing (GCC2002)received168submissions.GCC2003received550submissions,from which 176 regular papers and 173 short papers were accepted. The acceptance rate of regular papers was 32%, and the total acceptance rate was 64%. GCC 2004 received 427 main-conference submissions and 154 workshop submissions. The main conference accepted 96 regular papers and 62 short papers. The - ceptance rate of the regular papers was 23%. The total acceptance rate of the main conference was 37%. For this conference, we received 576 submissions. Each was reviewed by two independent members of the International Program Committee. After carefully evaluating their originality and quality, we accepted 57 regular papers and 84 short papers. The acceptance rate of regular papers was 10%. The total acc- tance rate was 25%.

A Wavelet Tour of Signal Processing

A Wavelet Tour of Signal Processing PDF Author: Stephane Mallat
Publisher: Elsevier
ISBN: 0080520839
Category : Computers
Languages : en
Pages : 663

Get Book Here

Book Description
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics

Algorithmic Graph Theory and Perfect Graphs

Algorithmic Graph Theory and Perfect Graphs PDF Author: Martin Charles Golumbic
Publisher: Elsevier
ISBN: 1483271978
Category : Mathematics
Languages : en
Pages : 307

Get Book Here

Book Description
Algorithmic Graph Theory and Perfect Graphs provides an introduction to graph theory through practical problems. This book presents the mathematical and algorithmic properties of special classes of perfect graphs. Organized into 12 chapters, this book begins with an overview of the graph theoretic notions and the algorithmic design. This text then examines the complexity analysis of computer algorithm and explains the differences between computability and computational complexity. Other chapters consider the parameters and properties of a perfect graph and explore the class of perfect graphs known as comparability graph or transitively orientable graphs. This book discusses as well the two characterizations of triangulated graphs, one algorithmic and the other graph theoretic. The final chapter deals with the method of performing Gaussian elimination on a sparse matrix wherein an arbitrary choice of pivots may result in the filling of some zero positions with nonzeros. This book is a valuable resource for mathematicians and computer scientists.

Understanding Machine Learning

Understanding Machine Learning PDF Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Graph Mining

Graph Mining PDF Author: Deepayan Chakrabarti
Publisher: Morgan & Claypool Publishers
ISBN: 160845116X
Category : Computers
Languages : en
Pages : 209

Get Book Here

Book Description
What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions