Author: Stephen Abbott
Publisher: Springer Science & Business Media
ISBN: 0387215069
Category : Mathematics
Languages : en
Pages : 269
Book Description
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
Understanding Analysis
Author: Stephen Abbott
Publisher: Springer Science & Business Media
ISBN: 0387215069
Category : Mathematics
Languages : en
Pages : 269
Book Description
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
Publisher: Springer Science & Business Media
ISBN: 0387215069
Category : Mathematics
Languages : en
Pages : 269
Book Description
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
Understanding Analysis
Author: Stephen Abbott
Publisher: KBookstore
ISBN: 1441928669
Category : Mathematics
Languages : en
Pages : 160
Book Description
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
Publisher: KBookstore
ISBN: 1441928669
Category : Mathematics
Languages : en
Pages : 160
Book Description
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
Understanding Analysis
Author: Stephen Abbott
Publisher: Springer Science & Business Media
ISBN: 9780387950600
Category : Mathematics
Languages : en
Pages : 284
Book Description
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
Publisher: Springer Science & Business Media
ISBN: 9780387950600
Category : Mathematics
Languages : en
Pages : 284
Book Description
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
A Radical Approach to Real Analysis
Author: David Bressoud
Publisher: American Mathematical Society
ISBN: 1470469049
Category : Mathematics
Languages : en
Pages : 339
Book Description
In this second edition of the MAA classic, exploration continues to be an essential component. More than 60 new exercises have been added, and the chapters on Infinite Summations, Differentiability and Continuity, and Convergence of Infinite Series have been reorganized to make it easier to identify the key ideas. A Radical Approach to Real Analysis is an introduction to real analysis, rooted in and informed by the historical issues that shaped its development. It can be used as a textbook, as a resource for the instructor who prefers to teach a traditional course, or as a resource for the student who has been through a traditional course yet still does not understand what real analysis is about and why it was created. The book begins with Fourier's introduction of trigonometric series and the problems they created for the mathematicians of the early 19th century. It follows Cauchy's attempts to establish a firm foundation for calculus and considers his failures as well as his successes. It culminates with Dirichlet's proof of the validity of the Fourier series expansion and explores some of the counterintuitive results Riemann and Weierstrass were led to as a result of Dirichlet's proof.
Publisher: American Mathematical Society
ISBN: 1470469049
Category : Mathematics
Languages : en
Pages : 339
Book Description
In this second edition of the MAA classic, exploration continues to be an essential component. More than 60 new exercises have been added, and the chapters on Infinite Summations, Differentiability and Continuity, and Convergence of Infinite Series have been reorganized to make it easier to identify the key ideas. A Radical Approach to Real Analysis is an introduction to real analysis, rooted in and informed by the historical issues that shaped its development. It can be used as a textbook, as a resource for the instructor who prefers to teach a traditional course, or as a resource for the student who has been through a traditional course yet still does not understand what real analysis is about and why it was created. The book begins with Fourier's introduction of trigonometric series and the problems they created for the mathematicians of the early 19th century. It follows Cauchy's attempts to establish a firm foundation for calculus and considers his failures as well as his successes. It culminates with Dirichlet's proof of the validity of the Fourier series expansion and explores some of the counterintuitive results Riemann and Weierstrass were led to as a result of Dirichlet's proof.
Understanding Real Analysis
Author: Paul Zorn
Publisher: CRC Press
ISBN: 1315315076
Category : Mathematics
Languages : en
Pages : 355
Book Description
Understanding Real Analysis, Second Edition offers substantial coverage of foundational material and expands on the ideas of elementary calculus to develop a better understanding of crucial mathematical ideas. The text meets students at their current level and helps them develop a foundation in real analysis. The author brings definitions, proofs, examples and other mathematical tools together to show how they work to create unified theory. These helps students grasp the linguistic conventions of mathematics early in the text. The text allows the instructor to pace the course for students of different mathematical backgrounds. Key Features: Meets and aligns with various student backgrounds Pays explicit attention to basic formalities and technical language Contains varied problems and exercises Drives the narrative through questions
Publisher: CRC Press
ISBN: 1315315076
Category : Mathematics
Languages : en
Pages : 355
Book Description
Understanding Real Analysis, Second Edition offers substantial coverage of foundational material and expands on the ideas of elementary calculus to develop a better understanding of crucial mathematical ideas. The text meets students at their current level and helps them develop a foundation in real analysis. The author brings definitions, proofs, examples and other mathematical tools together to show how they work to create unified theory. These helps students grasp the linguistic conventions of mathematics early in the text. The text allows the instructor to pace the course for students of different mathematical backgrounds. Key Features: Meets and aligns with various student backgrounds Pays explicit attention to basic formalities and technical language Contains varied problems and exercises Drives the narrative through questions
Understanding Analysis and its Connections to Secondary Mathematics Teaching
Author: Nicholas H. Wasserman
Publisher: Springer Nature
ISBN: 3030891984
Category : Education
Languages : en
Pages : 226
Book Description
Getting certified to teach high school mathematics typically requires completing a course in real analysis. Yet most teachers point out real analysis content bears little resemblance to secondary mathematics and report it does not influence their teaching in any significant way. This textbook is our attempt to change the narrative. It is our belief that analysis can be a meaningful part of a teacher's mathematical education and preparation for teaching. This book is a companion text. It is intended to be a supplemental resource, used in conjunction with a more traditional real analysis book. The textbook is based on our efforts to identify ways that studying real analysis can provide future teachers with genuine opportunities to think about teaching secondary mathematics. It focuses on how mathematical ideas are connected to the practice of teaching secondary mathematics–and not just the content of secondary mathematics itself. Discussions around pedagogy are premised on the belief that the way mathematicians do mathematics can be useful for how we think about teaching mathematics. The book uses particular situations in teaching to make explicit ways that the content of real analysis might be important for teaching secondary mathematics, and how mathematical practices prevalent in the study of real analysis can be incorporated as practices for teaching. This textbook will be of particular interest to mathematics instructors–and mathematics teacher educators–thinking about how the mathematics of real analysis might be applicable to secondary teaching, as well as to any prospective (or current) teacher who has wondered about what the purpose of taking such courses could be.
Publisher: Springer Nature
ISBN: 3030891984
Category : Education
Languages : en
Pages : 226
Book Description
Getting certified to teach high school mathematics typically requires completing a course in real analysis. Yet most teachers point out real analysis content bears little resemblance to secondary mathematics and report it does not influence their teaching in any significant way. This textbook is our attempt to change the narrative. It is our belief that analysis can be a meaningful part of a teacher's mathematical education and preparation for teaching. This book is a companion text. It is intended to be a supplemental resource, used in conjunction with a more traditional real analysis book. The textbook is based on our efforts to identify ways that studying real analysis can provide future teachers with genuine opportunities to think about teaching secondary mathematics. It focuses on how mathematical ideas are connected to the practice of teaching secondary mathematics–and not just the content of secondary mathematics itself. Discussions around pedagogy are premised on the belief that the way mathematicians do mathematics can be useful for how we think about teaching mathematics. The book uses particular situations in teaching to make explicit ways that the content of real analysis might be important for teaching secondary mathematics, and how mathematical practices prevalent in the study of real analysis can be incorporated as practices for teaching. This textbook will be of particular interest to mathematics instructors–and mathematics teacher educators–thinking about how the mathematics of real analysis might be applicable to secondary teaching, as well as to any prospective (or current) teacher who has wondered about what the purpose of taking such courses could be.
Analysis by Its History
Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 0387770364
Category : Mathematics
Languages : en
Pages : 390
Book Description
This book presents first-year calculus roughly in the order in which it was first discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations. The establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. Many quotations are included to give the flavor of the history. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, as well as researchers.
Publisher: Springer Science & Business Media
ISBN: 0387770364
Category : Mathematics
Languages : en
Pages : 390
Book Description
This book presents first-year calculus roughly in the order in which it was first discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations. The establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. Many quotations are included to give the flavor of the history. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, as well as researchers.
Analysis I
Author: Terence Tao
Publisher: Springer
ISBN: 9811017891
Category : Mathematics
Languages : en
Pages : 366
Book Description
This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.
Publisher: Springer
ISBN: 9811017891
Category : Mathematics
Languages : en
Pages : 366
Book Description
This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.
Elementary Classical Analysis
Author: Jerrold E. Marsden
Publisher: Macmillan
ISBN: 9780716721055
Category : Mathematics
Languages : en
Pages : 760
Book Description
Designed for courses in advanced calculus and introductory real analysis, Elementary Classical Analysis strikes a careful balance between pure and applied mathematics with an emphasis on specific techniques important to classical analysis without vector calculus or complex analysis. Intended for students of engineering and physical science as well as of pure mathematics.
Publisher: Macmillan
ISBN: 9780716721055
Category : Mathematics
Languages : en
Pages : 760
Book Description
Designed for courses in advanced calculus and introductory real analysis, Elementary Classical Analysis strikes a careful balance between pure and applied mathematics with an emphasis on specific techniques important to classical analysis without vector calculus or complex analysis. Intended for students of engineering and physical science as well as of pure mathematics.
Elementary Analysis
Author: Kenneth A. Ross
Publisher: CUP Archive
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description
Publisher: CUP Archive
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description