Author: Haraldur Olafsson
Publisher: Elsevier
ISBN: 0128157100
Category : Science
Languages : en
Pages : 366
Book Description
Uncertainties in Numerical Weather Prediction is a comprehensive work on the most current understandings of uncertainties and predictability in numerical simulations of the atmosphere. It provides general knowledge on all aspects of uncertainties in the weather prediction models in a single, easy to use reference. The book illustrates particular uncertainties in observations and data assimilation, as well as the errors associated with numerical integration methods. Stochastic methods in parameterization of subgrid processes are also assessed, as are uncertainties associated with surface-atmosphere exchange, orographic flows and processes in the atmospheric boundary layer. Through a better understanding of the uncertainties to watch for, readers will be able to produce more precise and accurate forecasts. This is an essential work for anyone who wants to improve the accuracy of weather and climate forecasting and interested parties developing tools to enhance the quality of such forecasts. - Provides a comprehensive overview of the state of numerical weather prediction at spatial scales, from hundreds of meters, to thousands of kilometers - Focuses on short-term 1-15 day atmospheric predictions, with some coverage appropriate for longer-term forecasts - Includes references to climate prediction models to allow applications of these techniques for climate simulations
Uncertainties in Numerical Weather Prediction
Author: Haraldur Olafsson
Publisher: Elsevier
ISBN: 0128154918
Category : Science
Languages : en
Pages : 364
Book Description
Uncertainties in Numerical Weather Prediction is a comprehensive work on the most current understandings of uncertainties and predictability in numerical simulations of the atmosphere. It provides general knowledge on all aspects of uncertainties in the weather prediction models in a single, easy to use reference. The book illustrates particular uncertainties in observations and data assimilation, as well as the errors associated with numerical integration methods. Stochastic methods in parameterization of subgrid processes are also assessed, as are uncertainties associated with surface-atmosphere exchange, orographic flows and processes in the atmospheric boundary layer. Through a better understanding of the uncertainties to watch for, readers will be able to produce more precise and accurate forecasts. This is an essential work for anyone who wants to improve the accuracy of weather and climate forecasting and interested parties developing tools to enhance the quality of such forecasts.
Publisher: Elsevier
ISBN: 0128154918
Category : Science
Languages : en
Pages : 364
Book Description
Uncertainties in Numerical Weather Prediction is a comprehensive work on the most current understandings of uncertainties and predictability in numerical simulations of the atmosphere. It provides general knowledge on all aspects of uncertainties in the weather prediction models in a single, easy to use reference. The book illustrates particular uncertainties in observations and data assimilation, as well as the errors associated with numerical integration methods. Stochastic methods in parameterization of subgrid processes are also assessed, as are uncertainties associated with surface-atmosphere exchange, orographic flows and processes in the atmospheric boundary layer. Through a better understanding of the uncertainties to watch for, readers will be able to produce more precise and accurate forecasts. This is an essential work for anyone who wants to improve the accuracy of weather and climate forecasting and interested parties developing tools to enhance the quality of such forecasts.
Uncertainties in Numerical Weather Prediction
Author: Haraldur Olafsson
Publisher: Elsevier
ISBN: 0128157100
Category : Science
Languages : en
Pages : 366
Book Description
Uncertainties in Numerical Weather Prediction is a comprehensive work on the most current understandings of uncertainties and predictability in numerical simulations of the atmosphere. It provides general knowledge on all aspects of uncertainties in the weather prediction models in a single, easy to use reference. The book illustrates particular uncertainties in observations and data assimilation, as well as the errors associated with numerical integration methods. Stochastic methods in parameterization of subgrid processes are also assessed, as are uncertainties associated with surface-atmosphere exchange, orographic flows and processes in the atmospheric boundary layer. Through a better understanding of the uncertainties to watch for, readers will be able to produce more precise and accurate forecasts. This is an essential work for anyone who wants to improve the accuracy of weather and climate forecasting and interested parties developing tools to enhance the quality of such forecasts. - Provides a comprehensive overview of the state of numerical weather prediction at spatial scales, from hundreds of meters, to thousands of kilometers - Focuses on short-term 1-15 day atmospheric predictions, with some coverage appropriate for longer-term forecasts - Includes references to climate prediction models to allow applications of these techniques for climate simulations
Publisher: Elsevier
ISBN: 0128157100
Category : Science
Languages : en
Pages : 366
Book Description
Uncertainties in Numerical Weather Prediction is a comprehensive work on the most current understandings of uncertainties and predictability in numerical simulations of the atmosphere. It provides general knowledge on all aspects of uncertainties in the weather prediction models in a single, easy to use reference. The book illustrates particular uncertainties in observations and data assimilation, as well as the errors associated with numerical integration methods. Stochastic methods in parameterization of subgrid processes are also assessed, as are uncertainties associated with surface-atmosphere exchange, orographic flows and processes in the atmospheric boundary layer. Through a better understanding of the uncertainties to watch for, readers will be able to produce more precise and accurate forecasts. This is an essential work for anyone who wants to improve the accuracy of weather and climate forecasting and interested parties developing tools to enhance the quality of such forecasts. - Provides a comprehensive overview of the state of numerical weather prediction at spatial scales, from hundreds of meters, to thousands of kilometers - Focuses on short-term 1-15 day atmospheric predictions, with some coverage appropriate for longer-term forecasts - Includes references to climate prediction models to allow applications of these techniques for climate simulations
The Primacy of Doubt
Author: Timothy Palmer
Publisher: Oxford University Press
ISBN: 0192843591
Category :
Languages : en
Pages : 321
Book Description
A bold, visionary, and mind-bending exploration of how the geometry of chaos can explain our uncertain world - from weather and pandemics to quantum physics and free willCovering a breathtaking range of topics - from climate change to the foundations of quantum physics, from economic modelling to conflict prediction, from free will to consciousness and spirituality - The Primacy of Doubt takes us on a unique journey through the science of uncertainty. A key theme that unifies these seemingly unconnected topics is the geometry of chaos: the beautiful and profound fractal structures that lie at the heart of much of modern mathematics. Royal SocietyResearch Professor Tim Palmer shows us how the geometry of chaos not only provides the means to predict the world around us, it suggests new insights into some of the most astonishing aspects of our universe and ourselves. This important and timely book helps the reader makes sense of uncertainty in a rapidlychanging world.
Publisher: Oxford University Press
ISBN: 0192843591
Category :
Languages : en
Pages : 321
Book Description
A bold, visionary, and mind-bending exploration of how the geometry of chaos can explain our uncertain world - from weather and pandemics to quantum physics and free willCovering a breathtaking range of topics - from climate change to the foundations of quantum physics, from economic modelling to conflict prediction, from free will to consciousness and spirituality - The Primacy of Doubt takes us on a unique journey through the science of uncertainty. A key theme that unifies these seemingly unconnected topics is the geometry of chaos: the beautiful and profound fractal structures that lie at the heart of much of modern mathematics. Royal SocietyResearch Professor Tim Palmer shows us how the geometry of chaos not only provides the means to predict the world around us, it suggests new insights into some of the most astonishing aspects of our universe and ourselves. This important and timely book helps the reader makes sense of uncertainty in a rapidlychanging world.
Numerical Weather and Climate Prediction
Author: Thomas Tomkins Warner
Publisher: Cambridge University Press
ISBN: 9780521513890
Category : Science
Languages : en
Pages : 550
Book Description
This textbook provides a comprehensive yet accessible treatment of weather and climate prediction, for graduate students, researchers and professionals. It teaches the strengths, weaknesses and best practices for the use of atmospheric models. It is ideal for the many scientists who use such models across a wide variety of applications. The book describes the different numerical methods, data assimilation, ensemble methods, predictability, land-surface modeling, climate modeling and downscaling, computational fluid-dynamics models, experimental designs in model-based research, verification methods, operational prediction, and special applications such as air-quality modeling and flood prediction. This volume will satisfy everyone who needs to know about atmospheric modeling for use in research or operations. It is ideal both as a textbook for a course on weather and climate prediction and as a reference text for researchers and professionals from a range of backgrounds: atmospheric science, meteorology, climatology, environmental science, geography, and geophysical fluid mechanics/dynamics.
Publisher: Cambridge University Press
ISBN: 9780521513890
Category : Science
Languages : en
Pages : 550
Book Description
This textbook provides a comprehensive yet accessible treatment of weather and climate prediction, for graduate students, researchers and professionals. It teaches the strengths, weaknesses and best practices for the use of atmospheric models. It is ideal for the many scientists who use such models across a wide variety of applications. The book describes the different numerical methods, data assimilation, ensemble methods, predictability, land-surface modeling, climate modeling and downscaling, computational fluid-dynamics models, experimental designs in model-based research, verification methods, operational prediction, and special applications such as air-quality modeling and flood prediction. This volume will satisfy everyone who needs to know about atmospheric modeling for use in research or operations. It is ideal both as a textbook for a course on weather and climate prediction and as a reference text for researchers and professionals from a range of backgrounds: atmospheric science, meteorology, climatology, environmental science, geography, and geophysical fluid mechanics/dynamics.
Operational Weather Forecasting
Author: Peter Michael Inness
Publisher: John Wiley & Sons
ISBN: 1118447638
Category : Science
Languages : en
Pages : 276
Book Description
This book offers a complete primer, covering the end-to-end process of forecast production, and bringing together a description of all the relevant aspects together in a single volume; with plenty of explanation of some of the more complex issues and examples of current, state-of-the-art practices. Operational Weather Forecasting covers the whole process of forecast production, from understanding the nature of the forecasting problem, gathering the observational data with which to initialise and verify forecasts, designing and building a model (or models) to advance those initial conditions forwards in time and then interpreting the model output and putting it into a form which is relevant to customers of weather forecasts. Included is the generation of forecasts on the monthly-to-seasonal timescales, often excluded in text-books despite this type of forecasting having been undertaken for several years. This is a rapidly developing field, with a lot of variations in practices between different forecasting centres. Thus the authors have tried to be as generic as possible when describing aspects of numerical model design and formulation. Despite the reliance on NWP, the human forecaster still has a big part to play in producing weather forecasts and this is described, along with the issue of forecast verification – how forecast centres measure their own performance and improve upon it. Advanced undergraduates and postgraduate students will use this book to understand how the theory comes together in the day-to-day applications of weather forecast production. In addition, professional weather forecasting practitioners, professional users of weather forecasts and trainers will all find this new member of the RMetS Advancing Weather and Climate series a valuable tool. Provides an end-to-end description of the weather forecasting process Clearly structured and pitched at an accessible level, the book discusses the practical choices that operational forecasting centres have to make in terms of what numerical models they use and when they are run. Takes a very practical approach, using real life case-studies to contextualize information Discusses the latest advances in the area, including ensemble methods, monthly to seasonal range prediction and use of ‘nowcasting’ tools such as radar and satellite imagery Full colour throughout Written by a highly respected team of authors with experience in both academia and practice. Part of the RMetS book series ‘Advancing Weather and Climate’
Publisher: John Wiley & Sons
ISBN: 1118447638
Category : Science
Languages : en
Pages : 276
Book Description
This book offers a complete primer, covering the end-to-end process of forecast production, and bringing together a description of all the relevant aspects together in a single volume; with plenty of explanation of some of the more complex issues and examples of current, state-of-the-art practices. Operational Weather Forecasting covers the whole process of forecast production, from understanding the nature of the forecasting problem, gathering the observational data with which to initialise and verify forecasts, designing and building a model (or models) to advance those initial conditions forwards in time and then interpreting the model output and putting it into a form which is relevant to customers of weather forecasts. Included is the generation of forecasts on the monthly-to-seasonal timescales, often excluded in text-books despite this type of forecasting having been undertaken for several years. This is a rapidly developing field, with a lot of variations in practices between different forecasting centres. Thus the authors have tried to be as generic as possible when describing aspects of numerical model design and formulation. Despite the reliance on NWP, the human forecaster still has a big part to play in producing weather forecasts and this is described, along with the issue of forecast verification – how forecast centres measure their own performance and improve upon it. Advanced undergraduates and postgraduate students will use this book to understand how the theory comes together in the day-to-day applications of weather forecast production. In addition, professional weather forecasting practitioners, professional users of weather forecasts and trainers will all find this new member of the RMetS Advancing Weather and Climate series a valuable tool. Provides an end-to-end description of the weather forecasting process Clearly structured and pitched at an accessible level, the book discusses the practical choices that operational forecasting centres have to make in terms of what numerical models they use and when they are run. Takes a very practical approach, using real life case-studies to contextualize information Discusses the latest advances in the area, including ensemble methods, monthly to seasonal range prediction and use of ‘nowcasting’ tools such as radar and satellite imagery Full colour throughout Written by a highly respected team of authors with experience in both academia and practice. Part of the RMetS book series ‘Advancing Weather and Climate’
Attribution of Extreme Weather Events in the Context of Climate Change
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309380979
Category : Science
Languages : en
Pages : 187
Book Description
As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.
Publisher: National Academies Press
ISBN: 0309380979
Category : Science
Languages : en
Pages : 187
Book Description
As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.
Sub-seasonal to Seasonal Prediction
Author: Andrew Robertson
Publisher: Elsevier
ISBN: 012811715X
Category : Science
Languages : en
Pages : 588
Book Description
The Gap Between Weather and Climate Forecasting: Sub-seasonal to Seasonal Prediction is an ideal reference for researchers and practitioners across the range of disciplines involved in the science, modeling, forecasting and application of this new frontier in sub-seasonal to seasonal (S2S) prediction. It provides an accessible, yet rigorous, introduction to the scientific principles and sources of predictability through the unique challenges of numerical simulation and forecasting with state-of-science modeling codes and supercomputers. Additional coverage includes the prospects for developing applications to trigger early action decisions to lessen weather catastrophes, minimize costly damage, and optimize operator decisions. The book consists of a set of contributed chapters solicited from experts and leaders in the fields of S2S predictability science, numerical modeling, operational forecasting, and developing application sectors. The introduction and conclusion, written by the co-editors, provides historical perspective, unique synthesis and prospects, and emerging opportunities in this exciting, complex and interdisciplinary field. - Contains contributed chapters from leaders and experts in sub-seasonal to seasonal science, forecasting and applications - Provides a one-stop shop for graduate students, academic and applied researchers, and practitioners in an emerging and interdisciplinary field - Offers a synthesis of the state of S2S science through the use of concrete examples, enabling potential users of S2S forecasts to quickly grasp the potential for application in their own decision-making - Includes a broad set of topics, illustrated with graphic examples, that highlight interdisciplinary linkages
Publisher: Elsevier
ISBN: 012811715X
Category : Science
Languages : en
Pages : 588
Book Description
The Gap Between Weather and Climate Forecasting: Sub-seasonal to Seasonal Prediction is an ideal reference for researchers and practitioners across the range of disciplines involved in the science, modeling, forecasting and application of this new frontier in sub-seasonal to seasonal (S2S) prediction. It provides an accessible, yet rigorous, introduction to the scientific principles and sources of predictability through the unique challenges of numerical simulation and forecasting with state-of-science modeling codes and supercomputers. Additional coverage includes the prospects for developing applications to trigger early action decisions to lessen weather catastrophes, minimize costly damage, and optimize operator decisions. The book consists of a set of contributed chapters solicited from experts and leaders in the fields of S2S predictability science, numerical modeling, operational forecasting, and developing application sectors. The introduction and conclusion, written by the co-editors, provides historical perspective, unique synthesis and prospects, and emerging opportunities in this exciting, complex and interdisciplinary field. - Contains contributed chapters from leaders and experts in sub-seasonal to seasonal science, forecasting and applications - Provides a one-stop shop for graduate students, academic and applied researchers, and practitioners in an emerging and interdisciplinary field - Offers a synthesis of the state of S2S science through the use of concrete examples, enabling potential users of S2S forecasts to quickly grasp the potential for application in their own decision-making - Includes a broad set of topics, illustrated with graphic examples, that highlight interdisciplinary linkages
Fair Weather
Author: National Research Council
Publisher: National Academies Press
ISBN: 030916852X
Category : Science
Languages : en
Pages : 238
Book Description
Decades of evolving U.S. policy have led to three sectors providing weather servicesâ€"NOAA (primarily the National Weather Service [NWS]), academic institutions, and private companies. This three-sector system has produced a scope and diversity of weather services in the United States second to none. However, rapid scientific and technological change is changing the capabilities of the sectors and creating occasional friction. Fair Weather: Effective Partnerships in Weather and Climate Services examines the roles of the three sectors in providing weather and climate services, the barriers to interaction among the sectors, and the impact of scientific and technological advances on the weather enterprise. Readers from all three sectors will be interested in the analysis and recommendations provided in Fair Weather.
Publisher: National Academies Press
ISBN: 030916852X
Category : Science
Languages : en
Pages : 238
Book Description
Decades of evolving U.S. policy have led to three sectors providing weather servicesâ€"NOAA (primarily the National Weather Service [NWS]), academic institutions, and private companies. This three-sector system has produced a scope and diversity of weather services in the United States second to none. However, rapid scientific and technological change is changing the capabilities of the sectors and creating occasional friction. Fair Weather: Effective Partnerships in Weather and Climate Services examines the roles of the three sectors in providing weather and climate services, the barriers to interaction among the sectors, and the impact of scientific and technological advances on the weather enterprise. Readers from all three sectors will be interested in the analysis and recommendations provided in Fair Weather.
Environmental Modelling
Author: Keith Beven
Publisher: CRC Press
ISBN: 1498717977
Category : Science
Languages : en
Pages : 393
Book Description
Uncertainty in the predictions of science when applied to the environment is an issue of great current relevance in relation to the impacts of climate change, protecting against natural and man-made disasters, pollutant transport and sustainable resource management. However, it is often ignored both by scientists and decision makers, or interpreted as a conflict or disagreement between scientists. This is not necessarily the case, the scientists might well agree, but their predictions would still be uncertain and knowledge of that uncertainty might be important in decision making. Environmental Modelling: An Uncertain Future? introduces students, scientists and decision makers to: the different concepts and techniques of uncertainty estimation in environmental prediction the philosophical background to different concepts of uncertainty the constraint of uncertainties by the collection of observations and data assimilation in real-time forecasting techniques for decision making under uncertainty. This book will be relevant to environmental modellers, practitioners and decision makers in hydrology, hydraulics, ecology, meteorology and oceanography, geomorphology, geochemistry, soil science, pollutant transport and climate change. A companion website for the book can be found at www.uncertain-future.org.uk
Publisher: CRC Press
ISBN: 1498717977
Category : Science
Languages : en
Pages : 393
Book Description
Uncertainty in the predictions of science when applied to the environment is an issue of great current relevance in relation to the impacts of climate change, protecting against natural and man-made disasters, pollutant transport and sustainable resource management. However, it is often ignored both by scientists and decision makers, or interpreted as a conflict or disagreement between scientists. This is not necessarily the case, the scientists might well agree, but their predictions would still be uncertain and knowledge of that uncertainty might be important in decision making. Environmental Modelling: An Uncertain Future? introduces students, scientists and decision makers to: the different concepts and techniques of uncertainty estimation in environmental prediction the philosophical background to different concepts of uncertainty the constraint of uncertainties by the collection of observations and data assimilation in real-time forecasting techniques for decision making under uncertainty. This book will be relevant to environmental modellers, practitioners and decision makers in hydrology, hydraulics, ecology, meteorology and oceanography, geomorphology, geochemistry, soil science, pollutant transport and climate change. A companion website for the book can be found at www.uncertain-future.org.uk
Predictability of Weather and Climate
Author: Tim Palmer
Publisher: Cambridge University Press
ISBN: 9781107414853
Category : Science
Languages : en
Pages : 0
Book Description
The topic of predictability in weather and climate has advanced significantly in recent years, both in understanding the phenomena that affect weather and climate and in techniques used to model and forecast them. This book, first published in 2006, brings together some of the world's leading experts on predicting weather and climate. It addresses predictability from the theoretical to the practical, on timescales from days to decades. Topics such as the predictability of weather phenomena, coupled ocean-atmosphere systems and anthropogenic climate change are among those included. Ensemble systems for forecasting predictability are discussed extensively. Ed Lorenz, father of chaos theory, makes a contribution to theoretical analysis with a previously unpublished paper. This well-balanced volume will be a valuable resource for many years. High-calibre chapter authors and extensive subject coverage make it valuable to people with an interest in weather and climate forecasting and environmental science, from graduate students to researchers.
Publisher: Cambridge University Press
ISBN: 9781107414853
Category : Science
Languages : en
Pages : 0
Book Description
The topic of predictability in weather and climate has advanced significantly in recent years, both in understanding the phenomena that affect weather and climate and in techniques used to model and forecast them. This book, first published in 2006, brings together some of the world's leading experts on predicting weather and climate. It addresses predictability from the theoretical to the practical, on timescales from days to decades. Topics such as the predictability of weather phenomena, coupled ocean-atmosphere systems and anthropogenic climate change are among those included. Ensemble systems for forecasting predictability are discussed extensively. Ed Lorenz, father of chaos theory, makes a contribution to theoretical analysis with a previously unpublished paper. This well-balanced volume will be a valuable resource for many years. High-calibre chapter authors and extensive subject coverage make it valuable to people with an interest in weather and climate forecasting and environmental science, from graduate students to researchers.