Ultra Low Power Transmitters for Wireless Sensor Networks

Ultra Low Power Transmitters for Wireless Sensor Networks PDF Author: Yuen Hui Chee
Publisher:
ISBN:
Category :
Languages : en
Pages : 284

Get Book Here

Book Description

Ultra Low Power Transmitters for Wireless Sensor Networks

Ultra Low Power Transmitters for Wireless Sensor Networks PDF Author: Yuen Hui Chee
Publisher:
ISBN:
Category :
Languages : en
Pages : 284

Get Book Here

Book Description


Ultra-low-energy Transmitters for Battery-free Wireless Sensor Networks

Ultra-low-energy Transmitters for Battery-free Wireless Sensor Networks PDF Author: Napong Panitantum
Publisher:
ISBN:
Category :
Languages : en
Pages : 97

Get Book Here

Book Description
As the number of autonomous data collection applications keep increasing, the demand for wireless sensor networks (WSNs) has seen explosive growth. In this dissertation, an ultra-low-energy WSN transmitter is developed to reduce the energy consumption of sensor nodes in WSNs. With an ultra-low-energy transceiver, it is possible to eliminate the battery in the sensor node and power itself with an energy harvester, thus creating a battery-free sensor node. A variety of applications can be accommodated with the battery-free sensor node as it has small size, light weight, and endless lifetime. Two prototype WSN transmitters are implemented to demonstrate the transmitter energy minimization. The first transmitter incorporates a fast frequency calibration to shorten the oscillation frequency tuning time. This minimizes energy wasted during the transmitter start-up period. The energy consumption of the second transmitter that employs a power oscillator architecture is minimized by maximizing the transmitter efficiency. The efficiency of the power oscillator circuit is analyzed and the design procedure for maximum efficiency is then developed. Prototype WSN transmitters were fabricated in 0.18-um CMOS technology. The first transmitter operates in the 915-MHz ISM band. With 0.5-MHz reference frequency, the transmitter takes only 72 us for the BFSK frequency calibration. It dissipates a power of 1.91 mW while radiating a power of -2.9 dBm. The second transmitter operates in the 2.45-GHz ISM band on a single supply of 0.65 V. The transmitter has efficiency as high as 23 % at -5.2 dBm radiated power. This corresponds to a low power consumption of 1.34 mW.

Ultra-Low Power Wireless Technologies for Sensor Networks

Ultra-Low Power Wireless Technologies for Sensor Networks PDF Author: Brian Otis
Publisher: Springer Science & Business Media
ISBN: 0387493131
Category : Technology & Engineering
Languages : en
Pages : 192

Get Book Here

Book Description
This book is written for academic and professional researchers designing communication systems for pervasive and low power applications. There is an introduction to wireless sensor networks, but the main emphasis of the book is on design techniques for low power, highly integrated transceivers. Instead of presenting a single design perspective, this book presents the design philosophies from three diverse research groups, providing three completely different strategies for achieving similar goals. By presenting diverse perspectives, this book prepares the reader for the countless design decisions they will be making in their own designs.

An Ultra-low-power 900MHz Radio Transmitter for Wireless Sensor Networks

An Ultra-low-power 900MHz Radio Transmitter for Wireless Sensor Networks PDF Author: Alyosha C. Molnar
Publisher:
ISBN:
Category :
Languages : en
Pages : 190

Get Book Here

Book Description


Ultra-low Power Radio Transceiver for Wireless Sensor Networks

Ultra-low Power Radio Transceiver for Wireless Sensor Networks PDF Author: Chi Jeon Hwang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The objective of this thesis is to present the design and implementation of ultra-low power radio transceivers at microwave frequencies, which are applicable to wireless sensor network (WSN) and, in particular, to the requirement of the Speckled Computing Consortium (or SpeckNet). This was achieved through quasi-MMIC prototypes and monolithic microwave integrated circuit (MMIC) with dc power consumption of less than 1mW and radio communication ranges operating at least one metre. A wireless sensor network is made up of widely distributed autonomous devices incorporating sensors to cooperatively monitor physical environments. There are different kinds of sensor network applications in which sensors perform a wide range of activities. Among these, a certain set of applications require that sensor nodes collect information about the physical environment. Each sensor node operates autonomously without a central node of control. However, there are many implementation challenges associated with sensor nodes. These nodes must consume extremely low power and must communicate with their neighbours at bit-rates in the order of hundreds of kilobits per second and potentially need to operate at high volumetric densities. Since the power constraint is the most challenging requirement, the radio transceiver must consume ultra-low power in order to prolong the limited battery capacity of a node. The radio transceiver must also be compact, less than 5?5 mm2, to achieve a target size for sensor node and operate over a range of at least one metre to allow communication between widely deployed nodes. Different transceiver topologies are discussed to choose the radio transceiver architecture with specifications that are required in this project. The conventional heterodyne and homodyne topologies are discussed to be unsuitable methods to achieve low power transceiver due to power hungry circuits and their high complexity. The super-regenerative transceiver is also discussed to be unsuitable method because it has a drawback of inherent frequency instability and its characteristics strongly depend on the performance of the super-regenerative oscillator. Instead, a more efficient method of modulation and demodulation such as on-off keying (OOK) is presented. Furthermore, design considerations are shown which can be used to achieve relatively large output voltages for small input powers using an OOK modulation system. This is important because transceiver does not require the use of additional circuits to increase gain or sensitivity and consequently it achieves lower power consumption in a sensor node. This thesis details the circuit design with both a commercial and in-house device technology with ultra-low dc power consumption while retaining adequate RF performance. It details the design of radio building blocks including amplifiers, oscillators, switches and detectors. Furthermore, the circuit integration is presented to achieve a compact transceiver and different circuit topologies to minimize dc power consumption are described. To achieve the sensitivity requirements of receiver, a detector design method with large output voltage is presented. The receiver is measured to have output voltages of 1mVp-p for input powers of -60dBm over a 1 metre operating range while consuming as much as 420?W. The first prototype combines all required blocks using an in-house GaAs MMIC process with commercial pseudomorphic high electron mobility transistor (PHEMT). The OOK radio transceiver successfully operates at the centre frequency of 10GHz for compact antenna and with ultra-low power consumption and shows an output power of -10.4dBm for the transmitter, an output voltage of 1mVp-p at an operating range of 1 metre for the receiver and a total power consumption of 840?W. Based on this prototype, an MMIC radio transceiver at the 24GHz band is also designed to further improve the performance and reduce the physical size with an advanced 50nm gate-length GaAs metamorphic high electron mobility transistor (MHEMT) device technology.

Ultra-Low-Power and Ultra-Low-Cost Short-Range Wireless Receivers in Nanoscale CMOS

Ultra-Low-Power and Ultra-Low-Cost Short-Range Wireless Receivers in Nanoscale CMOS PDF Author: Zhicheng Lin
Publisher: Springer
ISBN: 3319215248
Category : Technology & Engineering
Languages : en
Pages : 119

Get Book Here

Book Description
This book provides readers with a state-of-the-art description of techniques to be used for ultra-low-power (ULP) and ultra-low-cost (ULC), short-range wireless receivers. Readers will learn what is required to deploy these receivers in short-range wireless sensor networks, which are proliferating widely to serve the internet of things (IoT) for “smart cities.” The authors address key challenges involved with the technology and the typical tradeoffs between ULP and ULC. Three design examples with advanced circuit techniques are described in order to address these trade-offs, which special focus on cost minimization. These three techniques enable respectively, cascading of radio frequency (RF) and baseband (BB) circuits under an ultra-low-voltage (ULV) supply, cascading of RF and BB circuits in current domain for current reuse and a novel function-reuse receiver architecture, suitable for ULV and multi-band ULP applications such as the sub-GHz ZigBee.

Ultra-low Power Wireless Technologies for Sensor Networks

Ultra-low Power Wireless Technologies for Sensor Networks PDF Author: Brian Otis
Publisher:
ISBN:
Category :
Languages : en
Pages : 400

Get Book Here

Book Description


Ultra Low Power Transceiver for Wireless Body Area Networks

Ultra Low Power Transceiver for Wireless Body Area Networks PDF Author: Jens Masuch
Publisher: Springer Science & Business Media
ISBN: 3319000985
Category : Technology & Engineering
Languages : en
Pages : 126

Get Book Here

Book Description
Wireless Body Area Networks (WBANs) are expected to promote new applications for the ambulatory health monitoring of chronic patients and elderly population, aiming to improve their quality of life and independence. These networks are composed by wireless sensor nodes (WSNs) used for measuring physiological variables (e.g., glucose level in blood or body temperature) or controlling therapeutic devices (e.g., implanted insulin pumps). These nodes should exhibit a high degree of energy autonomy in order to extend their battery lifetime or even make the node supply to rely on harvesting techniques. Typically, the power budget of WSNs is dominated by the wireless link and, hence, many efforts have been directed during the last years toward the implementation of power efficient transceivers. Because of the short range (typically no more than a few meters) and low data rate (typically in between 10 kb/s and 1 Mb/s), simple communication protocols can be employed. One of these protocols, specifically tailored for WBAN applications, is the Bluetooth low energy (BLE) standard. This book describes the challenges and solutions for the design of ultra-low power transceivers for WBANs applications and presents the implementation details of a BLE transceiver prototype. Coverage includes not only the main concepts and architectures for achieving low power consumption, but also the details of the circuit design and its implementation in a standard CMOS technology.

Ultra-low Energy Architectures and Circuits for Cubic Millimeter Distributed Wireless Sensor Networks

Ultra-low Energy Architectures and Circuits for Cubic Millimeter Distributed Wireless Sensor Networks PDF Author: Brett Alan Warneke
Publisher:
ISBN:
Category :
Languages : en
Pages : 490

Get Book Here

Book Description


Ultra-low Power Receivers for Wireless Sensor Networks

Ultra-low Power Receivers for Wireless Sensor Networks PDF Author: James S. Ayers
Publisher:
ISBN:
Category : Wireless sensor networks
Languages : en
Pages : 194

Get Book Here

Book Description
In wireless sensor network applications, low-power operation of the wireless receiver is critical. To address this need an ultra-low power Binary Frequency Shift Keying (BFSK) receiver using the super-regenerative architecture is developed. A prototype receiver is built and tested for operation in the 900 MHz ISM band. Lab measurements show power consumption as low as 244 [mu]W with a sensitivity of -84 dBm while operating at 250 kbps. A second test chip designed to operate at 2.4 GHz improves on the previous design by adding full digital control and calibration. The 2.4 GHz receiver consumes 215 [mu]W while operating at 250 kbps and shows a 12 dB improvement in sensitivity over the original design. The entire receiver has an energy consumption of only 0.175 nJ/b while operating at 2 Mbps.