Ultra Low Power Electronics and Adiabatic Solutions

Ultra Low Power Electronics and Adiabatic Solutions PDF Author: Hervé Fanet
Publisher: John Wiley & Sons
ISBN: 1119006554
Category : Computers
Languages : en
Pages : 344

Get Book Here

Book Description
The improvement of energy efficiency in electronics and computing systems is currently central to information and communication technology design; low-cost cooling, autonomous portable systems and functioning on recovered energy all need to be continuously improved to allow modern technology to compute more while consuming less. This book presents the basic principles of the origins and limits of heat dissipation in electronic systems. Mechanisms of energy dissipation, the physical foundations for understanding CMOS components and sophisticated optimization techniques are explored in the first half of the book, before an introduction to reversible and quantum computing. Adiabatic computing and nano-relay technology are then explored as new solutions to achieving improvements in heat creation and energy consumption, particularly in renewed consideration of circuit architecture and component technology. Concepts inspired by recent research into energy efficiency are brought together in this book, providing an introduction to new approaches and technologies which are required to keep pace with the rapid evolution of electronics.

Ultra Low Power Electronics and Adiabatic Solutions

Ultra Low Power Electronics and Adiabatic Solutions PDF Author: Hervé Fanet
Publisher: John Wiley & Sons
ISBN: 1119006554
Category : Computers
Languages : en
Pages : 344

Get Book Here

Book Description
The improvement of energy efficiency in electronics and computing systems is currently central to information and communication technology design; low-cost cooling, autonomous portable systems and functioning on recovered energy all need to be continuously improved to allow modern technology to compute more while consuming less. This book presents the basic principles of the origins and limits of heat dissipation in electronic systems. Mechanisms of energy dissipation, the physical foundations for understanding CMOS components and sophisticated optimization techniques are explored in the first half of the book, before an introduction to reversible and quantum computing. Adiabatic computing and nano-relay technology are then explored as new solutions to achieving improvements in heat creation and energy consumption, particularly in renewed consideration of circuit architecture and component technology. Concepts inspired by recent research into energy efficiency are brought together in this book, providing an introduction to new approaches and technologies which are required to keep pace with the rapid evolution of electronics.

Emerging Devices for Low-Power and High-Performance Nanosystems

Emerging Devices for Low-Power and High-Performance Nanosystems PDF Author: Simon Deleonibus
Publisher: CRC Press
ISBN: 0429858612
Category : Science
Languages : en
Pages : 267

Get Book Here

Book Description
The history of information and communications technologies (ICT) has been paved by both evolutive paths and challenging alternatives, so-called emerging devices and architectures. Their introduction poses the issues of state variable definition, information processing, and process integration in 2D, above IC, and in 3D. This book reviews the capabilities of integrated nanosystems to match low power and high performance either by hybrid and heterogeneous CMOS in 2D/3D or by emerging devices for alternative sensing, actuating, data storage, and processing. The choice of future ICTs will need to take into account not only their energy efficiency but also their sustainability in the global ecosystem.

IEEE International Conference on Electronics, Circuits and Systems

IEEE International Conference on Electronics, Circuits and Systems PDF Author:
Publisher:
ISBN:
Category : Electric filters, Digital
Languages : en
Pages : 478

Get Book Here

Book Description


Adiabatic Logic

Adiabatic Logic PDF Author: Philip Teichmann
Publisher: Springer Science & Business Media
ISBN: 9400723458
Category : Technology & Engineering
Languages : en
Pages : 176

Get Book Here

Book Description
Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the power-clock is by means of the synchronous 2N2P LC oscillator, which is also robust with respect to pattern-induced capacitive variations. An easy to implement but powerful power-clock gating supplement is proposed by gating the synchronization signals. Diverse implementations to shut down the system are presented and rated for their applicability and other aspects like energy reduction capability and data retention. Advantageous usage of adiabatic logic requires compact and efficient arithmetic structures. A broad variety of adder structures and a Coordinate Rotation Digital Computer are compared and rated according to energy consumption and area usage, and the resulting energy saving potential against static CMOS proves the ultra-low-power capability of adiabatic logic. In the end, a new circuit topology has to compete with static CMOS also in productivity. On a 130nm test chip, a large scale test vehicle containing an FIR filter was implemented in adiabatic logic, utilizing a standard, library-based design flow, fabricated, measured and compared to simulations of a static CMOS counterpart, with measured saving factors compliant to the values gained by simulation. This leads to the conclusion that adiabatic logic is ready for productive design due to compatibility not only to CMOS technology, but also to electronic design automation (EDA) tools developed for static CMOS system design.

Adiabatic Logic

Adiabatic Logic PDF Author: Philip Teichmann
Publisher: Springer
ISBN: 9789400723443
Category : Technology & Engineering
Languages : en
Pages : 166

Get Book Here

Book Description
Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the power-clock is by means of the synchronous 2N2P LC oscillator, which is also robust with respect to pattern-induced capacitive variations. An easy to implement but powerful power-clock gating supplement is proposed by gating the synchronization signals. Diverse implementations to shut down the system are presented and rated for their applicability and other aspects like energy reduction capability and data retention. Advantageous usage of adiabatic logic requires compact and efficient arithmetic structures. A broad variety of adder structures and a Coordinate Rotation Digital Computer are compared and rated according to energy consumption and area usage, and the resulting energy saving potential against static CMOS proves the ultra-low-power capability of adiabatic logic. In the end, a new circuit topology has to compete with static CMOS also in productivity. On a 130nm test chip, a large scale test vehicle containing an FIR filter was implemented in adiabatic logic, utilizing a standard, library-based design flow, fabricated, measured and compared to simulations of a static CMOS counterpart, with measured saving factors compliant to the values gained by simulation. This leads to the conclusion that adiabatic logic is ready for productive design due to compatibility not only to CMOS technology, but also to electronic design automation (EDA) tools developed for static CMOS system design.

Ultra Low Energy Computing Using Adiabatic Switching Principle

Ultra Low Energy Computing Using Adiabatic Switching Principle PDF Author: Yibin Ye
Publisher:
ISBN:
Category : Adiabatic demagnetization
Languages : en
Pages : 52

Get Book Here

Book Description
Abstract: "This paper presents a new family of logic gates for ultra low energy computing using pulsed power CMOS logic. The logic gates use the principles of adiabatic switching principle and results show that in typical cases 90% of the energy can be recovered with operating frequency around 1MHz. Constant capacitance condition is enforced in our designs so that signals' energy can be efficiently recycled in the chip. We also present a detailed analysis and modeling of energy dissipation. The models were experimentally validated using the circuit simulator SPICE. We also simulated a serial adder (mod 2) implemented using the reversible logic principle. The design can recover 85% of energy while operating at a frequency of 1.67MHz. For a naturally reversible buffer chain, 95% of energy can be recovered at 1.1 MHz."

Transients of Modern Power Electronics

Transients of Modern Power Electronics PDF Author: Hua Bai
Publisher: John Wiley & Sons
ISBN: 1119972760
Category : Technology & Engineering
Languages : en
Pages : 374

Get Book Here

Book Description
In high power, high voltage electronics systems, a strategy to manage short timescale energy imbalances is fundamental to the system reliability. Without a theoretical framework, harmful local convergence of energy can affect the dynamic process of transformation, transmission, and storage which create an unreliable system. With an original approach that encourages understanding of both macroscopic and microscopic factors, the authors offer a solution. They demonstrate the essential theory and methodology for the design, modeling and prototyping of modern power electronics converters to create highly effective systems. Current applications such as renewable energy systems and hybrid electric vehicles are discussed in detail by the authors. Key features: offers a logical guide that is widely applicable to power electronics across power supplies, renewable energy systems, and many other areas analyses the short-scale (nano-micro second) transient phenomena and the transient processes in nearly all major timescales, from device switching processes at the nanoscale level, to thermal and mechanical processes at second level explores transient causes and shows how to correct them by changing the control algorithm or peripheral circuit includes two case studies on power electronics in hybrid electric vehicles and renewable energy systems Practitioners in major power electronic companies will benefit from this reference, especially design engineers aiming for optimal system performance. It will also be of value to faculty staff and graduate students specializing in power electronics within academia.

Low-Power VLSI Circuits and Systems

Low-Power VLSI Circuits and Systems PDF Author: Ajit Pal
Publisher: Springer
ISBN: 8132219376
Category : Technology & Engineering
Languages : en
Pages : 417

Get Book Here

Book Description
The book provides a comprehensive coverage of different aspects of low power circuit synthesis at various levels of design hierarchy; starting from the layout level to the system level. For a seamless understanding of the subject, basics of MOS circuits has been introduced at transistor, gate and circuit level; followed by various low-power design methodologies, such as supply voltage scaling, switched capacitance minimization techniques and leakage power minimization approaches. The content of this book will prove useful to students, researchers, as well as practicing engineers.

Low-power Electronics Design

Low-power Electronics Design PDF Author: Christian Piguet
Publisher:
ISBN: 9780012972403
Category : Low voltage integrated circuits
Languages : en
Pages :

Get Book Here

Book Description


Electronic Design

Electronic Design PDF Author:
Publisher:
ISBN:
Category : Electronic apparatus and appliances
Languages : en
Pages : 1562

Get Book Here

Book Description