Author: Zhenya Liu
Publisher: Academic Press
ISBN: 0128023600
Category : Technology & Engineering
Languages : en
Pages : 758
Book Description
The UHV transmission has many advantages for new power networks due to its capacity, long distance potential, high efficiency, and low loss. Development of UHV transmission technology is led by infrastructure development and renewal, as well as smart grid developments, which can use UHV power networks as the transmission backbone for hydropower, coal, nuclear power and large renewable energy bases. Over the years, State Grid Corporation of China has developed a leading position in UHV core technology R&D, equipment development, plus construction experience, standards development and operational management. SGCC built the most advanced technology 'two AC and two DC' UHV projects with the highest voltage-class and largest transmission capacity in the world, with a cumulative power transmission of 10TWh. This book comprehensively summarizes the research achievement, theoretical innovation and engineering practice in UHV power grid construction in China since 2005. It covers the key technology and parameters used in the design of the UHV transmission network, shows readers the technical problems State Grid encountered during the construction, and the solution they come up with. It also introduces key technology like UHV series compensation, DC converter valve, and the systematic standards and norms. - Discusses technical characteristics and advantages of using of AC/DC transmission system - Includes applications and technical standards of UHV technologies - Provides insight and case studies into a technology area that is developing worldwide - Introduces the technical difficulties encountered in design and construction phase and provides solutions
Ultra-High Voltage AC/DC Grids
Author: Zhenya Liu
Publisher: Academic Press
ISBN: 0128023600
Category : Technology & Engineering
Languages : en
Pages : 758
Book Description
The UHV transmission has many advantages for new power networks due to its capacity, long distance potential, high efficiency, and low loss. Development of UHV transmission technology is led by infrastructure development and renewal, as well as smart grid developments, which can use UHV power networks as the transmission backbone for hydropower, coal, nuclear power and large renewable energy bases. Over the years, State Grid Corporation of China has developed a leading position in UHV core technology R&D, equipment development, plus construction experience, standards development and operational management. SGCC built the most advanced technology 'two AC and two DC' UHV projects with the highest voltage-class and largest transmission capacity in the world, with a cumulative power transmission of 10TWh. This book comprehensively summarizes the research achievement, theoretical innovation and engineering practice in UHV power grid construction in China since 2005. It covers the key technology and parameters used in the design of the UHV transmission network, shows readers the technical problems State Grid encountered during the construction, and the solution they come up with. It also introduces key technology like UHV series compensation, DC converter valve, and the systematic standards and norms. - Discusses technical characteristics and advantages of using of AC/DC transmission system - Includes applications and technical standards of UHV technologies - Provides insight and case studies into a technology area that is developing worldwide - Introduces the technical difficulties encountered in design and construction phase and provides solutions
Publisher: Academic Press
ISBN: 0128023600
Category : Technology & Engineering
Languages : en
Pages : 758
Book Description
The UHV transmission has many advantages for new power networks due to its capacity, long distance potential, high efficiency, and low loss. Development of UHV transmission technology is led by infrastructure development and renewal, as well as smart grid developments, which can use UHV power networks as the transmission backbone for hydropower, coal, nuclear power and large renewable energy bases. Over the years, State Grid Corporation of China has developed a leading position in UHV core technology R&D, equipment development, plus construction experience, standards development and operational management. SGCC built the most advanced technology 'two AC and two DC' UHV projects with the highest voltage-class and largest transmission capacity in the world, with a cumulative power transmission of 10TWh. This book comprehensively summarizes the research achievement, theoretical innovation and engineering practice in UHV power grid construction in China since 2005. It covers the key technology and parameters used in the design of the UHV transmission network, shows readers the technical problems State Grid encountered during the construction, and the solution they come up with. It also introduces key technology like UHV series compensation, DC converter valve, and the systematic standards and norms. - Discusses technical characteristics and advantages of using of AC/DC transmission system - Includes applications and technical standards of UHV technologies - Provides insight and case studies into a technology area that is developing worldwide - Introduces the technical difficulties encountered in design and construction phase and provides solutions
Ultra-high Voltage AC/DC Power Transmission
Author: Hao Zhou
Publisher: Springer
ISBN: 3662545756
Category : Technology & Engineering
Languages : en
Pages : 1491
Book Description
This book addresses the latest findings on practical ultra-high voltage AC/DC (UHVAC/UHVDC) power transmission. Firstly, it reviews current constructions and future plans for major UHVDC and UHVAC projects around the world. The book subsequently illustrates the basic theories, economic analysis, and key technologies of UHV power networks in detail, and describes the design of the UHVAC substations and UHVDC converter stations and transmission lines. A wealth of clear and specific figures and formulas help readers to understand the fundamental theories underlying UHVAC and UHVDC technologies, as well as their developmental trends. This book is intended for graduate students, researchers and engineers in the fields of power systems and electrical engineering.
Publisher: Springer
ISBN: 3662545756
Category : Technology & Engineering
Languages : en
Pages : 1491
Book Description
This book addresses the latest findings on practical ultra-high voltage AC/DC (UHVAC/UHVDC) power transmission. Firstly, it reviews current constructions and future plans for major UHVDC and UHVAC projects around the world. The book subsequently illustrates the basic theories, economic analysis, and key technologies of UHV power networks in detail, and describes the design of the UHVAC substations and UHVDC converter stations and transmission lines. A wealth of clear and specific figures and formulas help readers to understand the fundamental theories underlying UHVAC and UHVDC technologies, as well as their developmental trends. This book is intended for graduate students, researchers and engineers in the fields of power systems and electrical engineering.
Extra High Voltage AC Transmission Engineering
Author: Rakosh Das Begamudre
Publisher: New Academic Science Limited
ISBN: 9781906574741
Category : Electric power distribution
Languages : en
Pages : 0
Book Description
Presented in a lucid style with easy-to-understand methodology Review Questions, Problems with Answers are given The material has been tried out for advanced undergraduate and postgraduate courses at reputed institutions.
Publisher: New Academic Science Limited
ISBN: 9781906574741
Category : Electric power distribution
Languages : en
Pages : 0
Book Description
Presented in a lucid style with easy-to-understand methodology Review Questions, Problems with Answers are given The material has been tried out for advanced undergraduate and postgraduate courses at reputed institutions.
High Voltage Direct Current Transmission
Author: Dragan Jovcic
Publisher: John Wiley & Sons
ISBN: 1119566614
Category : Technology & Engineering
Languages : en
Pages : 696
Book Description
Presents the latest developments in switchgear and DC/DC converters for DC grids, and includes substantially expanded material on MMC HVDC This newly updated edition covers all HVDC transmission technologies including Line Commutated Converter (LCC) HVDC; Voltage Source Converter (VSC) HVDC, and the latest VSC HVDC based on Modular Multilevel Converters (MMC), as well as the principles of building DC transmission grids. Featuring new material throughout, High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition offers several new chapters/sections including one on the newest MMC converters. It also provides extended coverage of switchgear, DC grid protection and DC/DC converters following the latest developments on the market and in research projects. All three HVDC technologies are studied in a wide range of topics, including: the basic converter operating principles; calculation of losses; system modelling, including dynamic modelling; system control; HVDC protection, including AC and DC fault studies; and integration with AC systems and fundamental frequency analysis. The text includes: A chapter dedicated to hybrid and mechanical DC circuit breakers Half bridge and full bridge MMC: modelling, control, start-up and fault management A chapter dedicated to unbalanced operation and control of MMC HVDC The advancement of protection methods for DC grids Wideband and high-order modeling of DC cables Novel treatment of topics not found in similar books, including SimPowerSystems models and examples for all HVDC topologies hosted by the 1st edition companion site. High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition serves as an ideal textbook for a graduate-level course or a professional development course.
Publisher: John Wiley & Sons
ISBN: 1119566614
Category : Technology & Engineering
Languages : en
Pages : 696
Book Description
Presents the latest developments in switchgear and DC/DC converters for DC grids, and includes substantially expanded material on MMC HVDC This newly updated edition covers all HVDC transmission technologies including Line Commutated Converter (LCC) HVDC; Voltage Source Converter (VSC) HVDC, and the latest VSC HVDC based on Modular Multilevel Converters (MMC), as well as the principles of building DC transmission grids. Featuring new material throughout, High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition offers several new chapters/sections including one on the newest MMC converters. It also provides extended coverage of switchgear, DC grid protection and DC/DC converters following the latest developments on the market and in research projects. All three HVDC technologies are studied in a wide range of topics, including: the basic converter operating principles; calculation of losses; system modelling, including dynamic modelling; system control; HVDC protection, including AC and DC fault studies; and integration with AC systems and fundamental frequency analysis. The text includes: A chapter dedicated to hybrid and mechanical DC circuit breakers Half bridge and full bridge MMC: modelling, control, start-up and fault management A chapter dedicated to unbalanced operation and control of MMC HVDC The advancement of protection methods for DC grids Wideband and high-order modeling of DC cables Novel treatment of topics not found in similar books, including SimPowerSystems models and examples for all HVDC topologies hosted by the 1st edition companion site. High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition serves as an ideal textbook for a graduate-level course or a professional development course.
UHV Transmission Technology
Author: China Electric Power Research Institute
Publisher: Academic Press
ISBN: 0128052805
Category : Technology & Engineering
Languages : en
Pages : 777
Book Description
UHV Transmission Technology enables power system employees and the vast majority of those caring for UHV transmission technology to understand and master key technologies of UHV transmission. This book can be used as a technical reference and guide for future UHV projects. UHV transmission has many advantages for new power networks due to its capacity, long distance potential, high efficiency and low loss. Development of UHV transmission technology is led by infrastructure development and renewal, as well as smart grid developments, which can use UHV power networks as the transmission backbone for hydropower, coal, nuclear power and large renewable energy bases. UHV is a key enabling technology for optimal allocation of resources across large geographic areas, and has a key role to play in reducing pressure on energy and land resources. - Provides a complete reference on the latest ultra-high voltage transmission technologies - Covers practical applications made possible by theoretical material, extensive proofs, applied systems examples and real world implementations, including coverage of problem solving and design and manufacturing guidance - Includes case studies of AC and DC demonstration projects - Features input from a world-leading UHV team
Publisher: Academic Press
ISBN: 0128052805
Category : Technology & Engineering
Languages : en
Pages : 777
Book Description
UHV Transmission Technology enables power system employees and the vast majority of those caring for UHV transmission technology to understand and master key technologies of UHV transmission. This book can be used as a technical reference and guide for future UHV projects. UHV transmission has many advantages for new power networks due to its capacity, long distance potential, high efficiency and low loss. Development of UHV transmission technology is led by infrastructure development and renewal, as well as smart grid developments, which can use UHV power networks as the transmission backbone for hydropower, coal, nuclear power and large renewable energy bases. UHV is a key enabling technology for optimal allocation of resources across large geographic areas, and has a key role to play in reducing pressure on energy and land resources. - Provides a complete reference on the latest ultra-high voltage transmission technologies - Covers practical applications made possible by theoretical material, extensive proofs, applied systems examples and real world implementations, including coverage of problem solving and design and manufacturing guidance - Includes case studies of AC and DC demonstration projects - Features input from a world-leading UHV team
Integration of High Voltage AC/DC Grids into Modern Power Systems
Author: Fazel Mohammadi
Publisher: MDPI
ISBN: 3039365258
Category : Technology & Engineering
Languages : en
Pages : 140
Book Description
Electric power transmission relies on AC and DC grids. The extensive integration of conventional and nonconventional energy sources and power converters into power grids has resulted in a demand for high voltage (HV), extra-high voltage (EHV), and ultra-high voltage (UHV) AC/DC transmission grids in modern power systems. To ensure the security, adequacy, and reliable operation of power systems, the practical aspects of interconnecting HV, EHV, and UHV AC/DC grids into the electric power systems, along with their economic and environmental impacts, should be considered. The stability analysis for the planning and operation of HV, EHV, and UHV AC/DC grids in power systems is regarded as another key issue in modern power systems. Moreover, interactions between power converters and other power electronics devices (e.g., FACTS devices) installed on the network are other aspects of power systems that must be addressed. This Special Issue aims to investigate the integration of HV, EHV, and UHV AC/DC grids into modern power systems by analyzing their control, operation, protection, dynamics, planning, reliability, and security, along with considering power quality improvement, market operations, power conversion, cybersecurity, supervisory and monitoring, diagnostics, and prognostics systems.
Publisher: MDPI
ISBN: 3039365258
Category : Technology & Engineering
Languages : en
Pages : 140
Book Description
Electric power transmission relies on AC and DC grids. The extensive integration of conventional and nonconventional energy sources and power converters into power grids has resulted in a demand for high voltage (HV), extra-high voltage (EHV), and ultra-high voltage (UHV) AC/DC transmission grids in modern power systems. To ensure the security, adequacy, and reliable operation of power systems, the practical aspects of interconnecting HV, EHV, and UHV AC/DC grids into the electric power systems, along with their economic and environmental impacts, should be considered. The stability analysis for the planning and operation of HV, EHV, and UHV AC/DC grids in power systems is regarded as another key issue in modern power systems. Moreover, interactions between power converters and other power electronics devices (e.g., FACTS devices) installed on the network are other aspects of power systems that must be addressed. This Special Issue aims to investigate the integration of HV, EHV, and UHV AC/DC grids into modern power systems by analyzing their control, operation, protection, dynamics, planning, reliability, and security, along with considering power quality improvement, market operations, power conversion, cybersecurity, supervisory and monitoring, diagnostics, and prognostics systems.
High Voltage Engineering
Author: Farouk A.M. Rizk
Publisher: CRC Press
ISBN: 1466513772
Category : Technology & Engineering
Languages : en
Pages : 794
Book Description
Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selection, testing, maintenance, and operation of a myriad of high-voltage power equipment, this must-have text: Discusses power system overvoltages, electric field calculation, and statistical analysis of ionization and breakdown phenomena essential for proper planning and interpretation of high-voltage tests Considers the breakdown of gases (SF6), liquids (insulating oil), solids, and composite materials, as well as the breakdown characteristics of long air gaps Describes insulation systems currently used in high-voltage engineering, including air insulation and insulators in overhead power transmission lines, gas-insulated substation (GIS) and cables, oil-paper insulation in power transformers, paper-oil insulation in high-voltage cables, and polymer insulation in cables Examines contemporary practices in insulation coordination in association with the International Electrotechnical Commission (IEC) definition and the latest standards Explores high-voltage testing and measuring techniques, from generation of test voltages to digital measuring methods With an emphasis on handling practical situations encountered in the operation of high-voltage power equipment, High Voltage Engineering provides readers with a detailed, real-world understanding of electrical insulation systems, including the various factors affecting—and the actual means of evaluating—insulation performance and their application in the establishment of technical specifications.
Publisher: CRC Press
ISBN: 1466513772
Category : Technology & Engineering
Languages : en
Pages : 794
Book Description
Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selection, testing, maintenance, and operation of a myriad of high-voltage power equipment, this must-have text: Discusses power system overvoltages, electric field calculation, and statistical analysis of ionization and breakdown phenomena essential for proper planning and interpretation of high-voltage tests Considers the breakdown of gases (SF6), liquids (insulating oil), solids, and composite materials, as well as the breakdown characteristics of long air gaps Describes insulation systems currently used in high-voltage engineering, including air insulation and insulators in overhead power transmission lines, gas-insulated substation (GIS) and cables, oil-paper insulation in power transformers, paper-oil insulation in high-voltage cables, and polymer insulation in cables Examines contemporary practices in insulation coordination in association with the International Electrotechnical Commission (IEC) definition and the latest standards Explores high-voltage testing and measuring techniques, from generation of test voltages to digital measuring methods With an emphasis on handling practical situations encountered in the operation of high-voltage power equipment, High Voltage Engineering provides readers with a detailed, real-world understanding of electrical insulation systems, including the various factors affecting—and the actual means of evaluating—insulation performance and their application in the establishment of technical specifications.
Self-Commutating Converters for High Power Applications
Author: Jos Arrillaga
Publisher: John Wiley & Sons
ISBN: 0470682124
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
For very high voltage or very high current applications, the power industry still relies on thyristor-based Line Commutated Conversion (LCC), which limits the power controllability to two quadrant operation. However, the ratings of self-commutating switches such as the Insulated-Gate Bipolar Transistor (IGBT) and Integrated Gate-Commutated Thyristor (IGCT), are reaching levels that make the technology possible for very high power applications. This unique book reviews the present state and future prospects of self-commutating static power converters for applications requiring either ultra high voltages (over 600 kV) or ultra high currents (in hundreds of kA). It is an important reference for electrical engineers working in the areas of power generation, transmission and distribution, utilities, manufacturing and consulting organizations. All topics in this area are held in this one complete volume. Within these pages, expect to find thorough coverage on: modelling and control of converter dynamics; multi-level Voltage Source Conversion (VSC) and Current Source Conversion (CSC); ultra high-voltage VSC and CSC DC transmission; low voltage high DC current AC-DC conversion; industrial high current applications; power conversion for high energy storage. This text has a host of helpful material that also makes it a useful source of knowledge for final year engineering students specializing in power engineering, and those involved in postgraduate research.
Publisher: John Wiley & Sons
ISBN: 0470682124
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
For very high voltage or very high current applications, the power industry still relies on thyristor-based Line Commutated Conversion (LCC), which limits the power controllability to two quadrant operation. However, the ratings of self-commutating switches such as the Insulated-Gate Bipolar Transistor (IGBT) and Integrated Gate-Commutated Thyristor (IGCT), are reaching levels that make the technology possible for very high power applications. This unique book reviews the present state and future prospects of self-commutating static power converters for applications requiring either ultra high voltages (over 600 kV) or ultra high currents (in hundreds of kA). It is an important reference for electrical engineers working in the areas of power generation, transmission and distribution, utilities, manufacturing and consulting organizations. All topics in this area are held in this one complete volume. Within these pages, expect to find thorough coverage on: modelling and control of converter dynamics; multi-level Voltage Source Conversion (VSC) and Current Source Conversion (CSC); ultra high-voltage VSC and CSC DC transmission; low voltage high DC current AC-DC conversion; industrial high current applications; power conversion for high energy storage. This text has a host of helpful material that also makes it a useful source of knowledge for final year engineering students specializing in power engineering, and those involved in postgraduate research.
High Voltage Engineering and Testing
Author: Hugh McLaren Ryan
Publisher: IET
ISBN: 9780852967751
Category : Science
Languages : en
Pages : 748
Book Description
High voltage, Electrical engineering, Electronic engineering, Electrical testing, Building and Construction
Publisher: IET
ISBN: 9780852967751
Category : Science
Languages : en
Pages : 748
Book Description
High voltage, Electrical engineering, Electronic engineering, Electrical testing, Building and Construction
Restructured Electric Power Systems
Author: Xiao-Ping Zhang
Publisher: John Wiley & Sons
ISBN: 1118017072
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
The latest practical applications of electricity market equilibrium models in analyzing electricity markets Electricity market deregulation is driving the power energy production from a monopolistic structure into a competitive market environment. The development of electricity markets has necessitated the need to analyze market behavior and power. Restructured Electric Power Systems reviews the latest developments in electricity market equilibrium models and discusses the application of such models in the practical analysis and assessment of electricity markets. Drawing upon the extensive involvement in the research and industrial development of the leading experts in the subject area, the book starts by explaining the current developments of electrical power systems towards smart grids and then relates the operation and control technologies to the aspects in electricity markets. It explores: The problems of electricity market behavior and market power Mathematical programs with equilibrium constraints (MPEC) and equilibrium problems with equilibrium constraints (EPEC) Tools and techniques for solving the electricity market equilibrium problems Various electricity market equilibrium models State-of-the-art techniques for computing the electricity market equilibrium problems The application of electricity market equilibrium models in assessing the economic benefits of transmission expansions for market environments, forward and spot markets, short-term power system security, and analysis of reactive power impact Also featured are computational resources to allow readers to develop algorithms on their own, as well as future research directions in modeling and computational techniques in electricity market analysis. Restructured Electric Power Systems is an invaluable reference for electrical engineers and power system economists from power utilities and for professors, postgraduate students, and undergraduate students in electrical power engineering, as well as those responsible for the design, engineering, research, and development of competitive electricity markets and electricity market policy.
Publisher: John Wiley & Sons
ISBN: 1118017072
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
The latest practical applications of electricity market equilibrium models in analyzing electricity markets Electricity market deregulation is driving the power energy production from a monopolistic structure into a competitive market environment. The development of electricity markets has necessitated the need to analyze market behavior and power. Restructured Electric Power Systems reviews the latest developments in electricity market equilibrium models and discusses the application of such models in the practical analysis and assessment of electricity markets. Drawing upon the extensive involvement in the research and industrial development of the leading experts in the subject area, the book starts by explaining the current developments of electrical power systems towards smart grids and then relates the operation and control technologies to the aspects in electricity markets. It explores: The problems of electricity market behavior and market power Mathematical programs with equilibrium constraints (MPEC) and equilibrium problems with equilibrium constraints (EPEC) Tools and techniques for solving the electricity market equilibrium problems Various electricity market equilibrium models State-of-the-art techniques for computing the electricity market equilibrium problems The application of electricity market equilibrium models in assessing the economic benefits of transmission expansions for market environments, forward and spot markets, short-term power system security, and analysis of reactive power impact Also featured are computational resources to allow readers to develop algorithms on their own, as well as future research directions in modeling and computational techniques in electricity market analysis. Restructured Electric Power Systems is an invaluable reference for electrical engineers and power system economists from power utilities and for professors, postgraduate students, and undergraduate students in electrical power engineering, as well as those responsible for the design, engineering, research, and development of competitive electricity markets and electricity market policy.