Turbulence Structure of the Hurricane Boundary Layer Between the Outer Rainbands

Turbulence Structure of the Hurricane Boundary Layer Between the Outer Rainbands PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 15

Get Book Here

Book Description
As part of the Coupled Boundary Layers Air-Sea Transfer (CBLAST)-Hurricane program, flights were conducted to directly measure turbulent fluxes and turbulence properties in the high-wind boundary layer of hurricanes between the outer rainbands. For the first time, vertical profiles of normalized momentum fluxes, sensible heat and humidity fluxes, and variances of three-dimensional wind velocities and specific humidity are presented for the hurricane boundary layer with surface wind speeds ranging from 20 to 30 m/s. The turbulent kinetic energy budget is estimated, indicating that the shear production and dissipation are the major source and sink terms, respectively. The imbalance in the turbulent kinetic energy budget indicates that the unmeasured terms, such as horizontal advection, may be important in hurricane boundary layer structure and dynamics. Finally, the thermodynamic boundary layer height, estimated based on the virtual potential temperature profiles, is roughly half of the boundary layer height estimated from the momentum flux profiles. The latter height where momentum and humidity fluxes tend to vanish is close to that of the inflow layer and also of the maximum in the tangential velocity profiles.

Turbulence Structure of the Hurricane Boundary Layer Between the Outer Rainbands

Turbulence Structure of the Hurricane Boundary Layer Between the Outer Rainbands PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 15

Get Book Here

Book Description
As part of the Coupled Boundary Layers Air-Sea Transfer (CBLAST)-Hurricane program, flights were conducted to directly measure turbulent fluxes and turbulence properties in the high-wind boundary layer of hurricanes between the outer rainbands. For the first time, vertical profiles of normalized momentum fluxes, sensible heat and humidity fluxes, and variances of three-dimensional wind velocities and specific humidity are presented for the hurricane boundary layer with surface wind speeds ranging from 20 to 30 m/s. The turbulent kinetic energy budget is estimated, indicating that the shear production and dissipation are the major source and sink terms, respectively. The imbalance in the turbulent kinetic energy budget indicates that the unmeasured terms, such as horizontal advection, may be important in hurricane boundary layer structure and dynamics. Finally, the thermodynamic boundary layer height, estimated based on the virtual potential temperature profiles, is roughly half of the boundary layer height estimated from the momentum flux profiles. The latter height where momentum and humidity fluxes tend to vanish is close to that of the inflow layer and also of the maximum in the tangential velocity profiles.

An Airborne Investigation of the Atmospheric Boundary Layer Structure in the Hurricane Force Wind Regime

An Airborne Investigation of the Atmospheric Boundary Layer Structure in the Hurricane Force Wind Regime PDF Author: Jun Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
As part of the ONR sponsored Coupled Boundary Layer/Air-Sea Transfer (CBLAST) experiment, data from the NOAA WP-3D research aircraft measurements into major Hurricanes in the 2002-2004 seasons are analyzed to investigate the structure of the boundary layer. The turbulent fluxes of momentum and enthalpy are derived using the eddy correlation method. For the first time, the momentum and enthalpy fluxes were directly measured in the boundary layer of a hurricane with wind speeds up to 30 m/s. A new bulk parameterization of the momentum and enthalpy flux is developed. The vertical structure of turbulence and fluxes are presented for the entire boundary layer in the rain free region between the outer rainbands. The turbulent kinetic energy budget was estimated for the hurricane boundary layer between the outer rainbands. The universal spectra and cospectra of the wind velocity, temperature and humidity are also derived. A case study on the effects of roll vortices on the turbulent fluxes is conducted, which confirmed the existence of the boundary layer rolls and gave the first estimate of their modulation of the momentum and sensible heat flux. The CBLAST data provided an invaluable perspective on the evaluation and development of the boundary layer parameterization suited for the hurricane models. Studies on entrainment processes above of the mixed layer and turbulent transport processes induced by the inflow are recommended in the future.

Boundary Layer Structure and Dynamics in Outer Hurricane Rainbands

Boundary Layer Structure and Dynamics in Outer Hurricane Rainbands PDF Author: Mark Dillon Powell
Publisher:
ISBN:
Category : Boundary layer (Meteorology)
Languages : en
Pages : 227

Get Book Here

Book Description


Turbulent Characteristics in the Hurricane Boundary Layer

Turbulent Characteristics in the Hurricane Boundary Layer PDF Author: Sunwei Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 458

Get Book Here

Book Description
As the medium between the sea surface and the upper atmosphere in a hurricane, the Hurricane Boundary Layer (HBL) plays a key role in the overall dynamics of a tropical cyclone, and therefore turbulence exchanges within the HBL deserve a thorough investigation. However, since it is dangerous and difficult to take direct measurements within the HBL, studies of the HBL turbulence processes based on direct observations are rare. Thanks to the newly developed dropwindsonde equipped with a Global Position System (GPS) receiver, it is now possible to measure wind velocities and other meteorological variables with an unprecedented accuracy and resolution in the HBL. To fully utilize dropwindsonde measurements, it is necessary to thoroughly understand its motion characteristics in the measured wind field since its horizontal motions are usually reported as wind measurements. For that reason, the dropwindsonde motion in a pseudo-stochastic wind field with known statistics is simulated. The simulation results illustrate the importance of the wind finding equations introduced by Hock and Franklin (1999) which calculate local winds from dropwindsonde motions. The simulation results show that they are important in reproducing both mean and turbulent wind structures in the HBL. One of its basic assumptions that the dropwindsonde drag coefficient is a constant regardless of the angle of attack is, however, invalidated by the wind tunnel tests conducted in this study. Given that this assumption is essential in both deriving the wind finding equations and in conducting the numerical dropwindsonde motion simulation described above, it is necessary to adapt the dropwindsonde motion model and to repeat the motion simulation to recheck the validity of the wind finding equations demonstrated in the previous simulation. The results validates the wind finding equations although it is derived based on a false assumption that the dropwindsonde drag coefficient is a constant regardless of angles of attack. Moreover, through analyzing the adapted dropwindsonde motion model, a new approach to estimate the vertical wind is proposed which is shown to increase the accuracy in vertical wind estimation by nearly 70%. Based on the findings derived in the dropwindsonde motion simulations, an in-house software package is designed to process the actual dropwindsonde measurements gathered from 1997 to 2010. The in-house software package, showing an effectiveness equivalent to other widely used processing systems, gives users more control over the processing and compositing procedures used to derive the desired statistics of the measured wind field. With the help of this software package, dropwindsonde measurements are processed and composited to produce the mean, turbulence intensity, and turbulent length scale profiles of the HBL. While the mean wind structure confirms the findings made by several previous studies, the turbulence structure reveals that the turbulence diffusivity formulation currently used by the Yonsei University planetary boundary layer scheme, or the YSU scheme, in Weather Research and Forecasting Model(WRF), a widely used hurricane wind simulation package, correctly simulate turbulent mixing in the HBL up to 200m from the sea surface. In a theoretical discussion of the validity of the YSU scheme, it is found that both the velocity scale and height scale used in its turbulence diffusivity formulation should be revised to take into consideration the special turbulence characteristics in the HBL. For the purpose of checking the turbulence diffusivity formulation used in the YSU scheme, high resolution numerical simulations of an idealized tropical cyclone are conducted using WRF. The simulation results show that only revising the HBL height calculation is not adequate to improve the numerical simulation of hurricanes. Therefore, a deeper investigation of the YSU scheme in simulating the HBL turbulence is required.

A Study on the Turbulent Characteristics Within the Hurricane Boundary Layer

A Study on the Turbulent Characteristics Within the Hurricane Boundary Layer PDF Author: Sunwei Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 458

Get Book Here

Book Description
As the medium between the sea surface and the upper atmosphere in a hurricane, the Hurricane Boundary Layer (HBL) plays a key role in the overall dynamics of a tropical cyclone, and therefore turbulence exchanges within the HBL deserve a thorough investigation. However, since it is dangerous and difficult to take direct measurements within the HBL, studies of the HBL turbulence processes based on direct observations are rare. Thanks to the newly developed dropwindsonde equipped with a Global Position System (GPS) receiver, it is now possible to measure wind velocities and other meteorological variables with an unprecedented accuracy and resolution in the HBL. To fully utilize dropwindsonde measurements, it is necessary to thoroughly understand its motion characteristics in the measured wind field since its horizontal motions are usually reported as wind measurements. For that reason, the dropwindsonde motion in a pseudo-stochastic wind field with known statistics is simulated. The simulation results illustrate the importance of the wind finding equations introduced by Hock and Franklin (1999) which calculate local winds from dropwindsonde motions. The simulation results show that they are important in reproducing both mean and turbulent wind structures in the HBL. One of its basic assumptions that the dropwindsonde drag coefficient is a constant regardless of the angle of attack is, however, invalidated by the wind tunnel tests conducted in this study. Given that this assumption is essential in both deriving the wind finding equations and in conducting the numerical dropwindsonde motion simulation described above, it is necessary to adapt the dropwindsonde motion model and to repeat the motion simulation to recheck the validity of the wind finding equations demonstrated in the previous simulation. The results validates the wind finding equations although it is derived based on a false assumption that the dropwindsonde drag coefficient is a constant regardless of angles of attack. Moreover, through analyzing the adapted dropwindsonde motion model, a new approach to estimate the vertical wind is proposed which is shown to increase the accuracy in vertical wind estimation by nearly 70%. Based on the findings derived in the dropwindsonde motion simulations, an in-house software package is designed to process the actual dropwindsonde measurements gathered from 1997 to 2010. The in-house software package, showing an effectiveness equivalent to other widely used processing systems, gives users more control over the processing and compositing procedures used to derive the desired statistics of the measured wind field. With the help of this software package, dropwindsonde measurements are processed and composited to produce the mean, turbulence intensity, and turbulent length scale profiles of the HBL. While the mean wind structure confirms the findings made by several previous studies, the turbulence structure reveals that the turbulence diffusivity formulation currently used by the Yonsei University planetary boundary layer scheme, or the YSU scheme, in Weather Research and Forecasting Model(WRF), a widely used hurricane wind simulation package, correctly simulate turbulent mixing in the HBL up to 200m from the sea surface. In a theoretical discussion of the validity of the YSU scheme, it is found that both the velocity scale and height scale used in its turbulence diffusivity formulation should be revised to take into consideration the special turbulence characteristics in the HBL. For the purpose of checking the turbulence diffusivity formulation used in the YSU scheme, high resolution numerical simulations of an idealized tropical cyclone are conducted using WRF. The simulation results show that only revising the HBL height calculation is not adequate to improve the numerical simulation of hurricanes. Therefore, a deeper investigation of the YSU scheme in simulating the HBL turbulence is required.

Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Predictions

Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Predictions PDF Author: U.C. Mohanty
Publisher: Springer
ISBN: 9402408967
Category : Science
Languages : en
Pages : 762

Get Book Here

Book Description
This book deals primarily with monitoring, prediction and understanding of Tropical Cyclones (TCs). It was envisioned to serve as a teaching and reference resource at universities and academic institutions for researchers and post-graduate students. It has been designed to provide a broad outlook on recent advances in observations, assimilation and modeling of TCs with detailed and advanced information on genesis, intensification, movement and storm surge prediction. Specifically, it focuses on (i) state-of-the-art observations for advancing TC research, (ii) advances in numerical weather prediction for TCs, (iii) advanced assimilation and vortex initialization techniques, (iv) ocean coupling, (v) current capabilities to predict TCs, and (vi) advanced research in physical and dynamical processes in TCs. The chapters in the book are authored by leading international experts from academic, research and operational environments. The book is also expected to stimulate critical thinking for cyclone forecasters and researchers, managers, policy makers, and graduate and post-graduate students to carry out future research in the field of TCs.

On the Estimation (from Bulk Data) of Boundary Layer Variables and Cloud Base Mass Flux in Mature Hurricanes

On the Estimation (from Bulk Data) of Boundary Layer Variables and Cloud Base Mass Flux in Mature Hurricanes PDF Author: Michael S. Moss
Publisher:
ISBN:
Category : Boundary layer (Meteorology)
Languages : en
Pages : 44

Get Book Here

Book Description


Landfalling tropical cyclones: physical processes, forecasting and impacts

Landfalling tropical cyclones: physical processes, forecasting and impacts PDF Author: Yihong Duan
Publisher: Frontiers Media SA
ISBN: 2832510078
Category : Science
Languages : en
Pages : 324

Get Book Here

Book Description


Hurricane!

Hurricane! PDF Author: Robert Simpson
Publisher: American Geophysical Union
ISBN:
Category : Nature
Languages : en
Pages : 384

Get Book Here

Book Description
This book is based upon presentations at an historical symposium on hurricanes convened by the American Geophysical Union at its Fall meeting in San Francisco, December 16, 2000".

Atmospheric Turbulence and Mesoscale Meteorology

Atmospheric Turbulence and Mesoscale Meteorology PDF Author: Evgeni Fedorovich
Publisher: Cambridge University Press
ISBN: 9780521835886
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
Leading researchers come together in this 2004 text to survey recent developments in atmospheric turbulence and mesoscale meteorology.