Turbo-Charged Local Stochastic Volatility Models

Turbo-Charged Local Stochastic Volatility Models PDF Author: Ghislain Vong
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
This article presents an alternative formulation of the standard Local Stochastic Volatility model (LSV) widely used for the pricing and risk-management of FX derivatives and to a lesser extent of equity derivatives. In the standard model, calibration is achieved by solving a non-linear two-factor Kolmogorov forward PDE, where a minimum number of vol points is required to achieve convergence of a finite difference implementation. In contrast, we propose to model the volatility process by a Markov chain defined over an arbitrary small number of states, so that calibration and pricing are achieved by solving a coupled system of one-factor PDEs. The practical benefits are twofolds: existing one-factor PDE solvers can be recycled to model stochastic volatility, while the reduction in number of discretisation points implies a speedup in execution time that enables real-time risk-management of large derivatives position.

Local Stochastic Volatility Models

Local Stochastic Volatility Models PDF Author: Cristian Homescu
Publisher:
ISBN:
Category :
Languages : en
Pages : 57

Get Book Here

Book Description
We analyze in detail calibration and pricing performed within the framework of local stochastic volatility LSV models, which have become the industry market standard for FX and equity markets. We present the main arguments for the need of having such models, and address the question whether jumps have to be included. We include a comprehensive literature overview, and focus our exposition on important details related to calibration procedures and option pricing using PDEs or PIDEs derived from LSV models. We describe calibration procedures, with special attention given to usage and solution of corresponding forward Kolmogorov PDE/PIDE, and outline powerful algorithms for estimation of model parameters. Emphasis is placed on presenting practical details regarding the setup and the numerical solution of both forward and backward PDEs/PIDEs obtained from the LSV models. Consequently we discuss specifics (based on our experience and best practices from literature) regarding choice of boundary conditions, construction of nonuniform spatial grids and adaptive temporal grids, selection of efficient and appropriate finite difference schemes (with possible enhancements), etc. We also show how to practically integrate specific features of various types of financial instruments within calibration and pricing settings. We consider all questions and topics identified as most relevant during the selection, calibration and pricing procedures associated with local stochastic volatility models, providing answers (to the best of our knowledge), and present references for deeper understanding and for additional perspectives. In a nutshell, it is our intention to present here an effective roadmap for a successful LSV journey.

Local-Stochastic Volatility

Local-Stochastic Volatility PDF Author: Lorenzo Bergomi
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
We examine local-stochastic volatility models and derive a simple condition such models need to obey so that the carry P&L of a delta-hedged/vega-hedged position makes sense in a trading context.We give examples of admissible and non-admissible models and discuss the issue of the delta position in the hedge portfolio.We end with a characterization of the break-even levels of the local volatility model - itself in the admissible class.

Rough PDEs for Local Stochastic Volatility Models

Rough PDEs for Local Stochastic Volatility Models PDF Author: Peter Bank
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In this work, we introduce a novel pricing methodology in general, possibly non-Markovian local stochastic volatility (LSV) models. We observe that by conditioning the LSV dynamics on the Brownian motion that drives the volatility, one obtains a time-inhomogeneous Markov process. Using tools from rough path theory, we describe how to precisely understand the conditional LSV dynamics and reveal their Markovian nature. The latter allows us to connect the conditional dynamics to so-called rough partial differential equations (RPDEs), through a Feynman-Kac type of formula. In terms of European pricing, conditional on realizations of one Brownian motion, we can compute conditional option prices by solving the corresponding linear RPDEs, and then average over all samples to find unconditional prices. Our approach depends only minimally on the specification of the volatility, making it applicable for a wide range of classical and rough LSV models, and it establishes a PDE pricing method for non-Markovian models. Finally, we present a first glimpse at numerical methods for RPDEs and apply them to price European options in several rough LSV models.

Stochastic Volatility Modeling

Stochastic Volatility Modeling PDF Author: Lorenzo Bergomi
Publisher: CRC Press
ISBN: 1482244071
Category : Business & Economics
Languages : en
Pages : 520

Get Book Here

Book Description
Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c

FX Barrier Options

FX Barrier Options PDF Author: Zareer Dadachanji
Publisher: Springer
ISBN: 1137462752
Category : Business & Economics
Languages : en
Pages : 360

Get Book Here

Book Description
Barrier options are a class of highly path-dependent exotic options which present particular challenges to practitioners in all areas of the financial industry. They are traded heavily as stand-alone contracts in the Foreign Exchange (FX) options market, their trading volume being second only to that of vanilla options. The FX options industry has correspondingly shown great innovation in this class of products and in the models that are used to value and risk-manage them. FX structured products commonly include barrier features, and in order to analyse the effects that these features have on the overall structured product, it is essential first to understand how individual barrier options work and behave. FX Barrier Options takes a quantitative approach to barrier options in FX environments. Its primary perspectives are those of quantitative analysts, both in the front office and in control functions. It presents and explains concepts in a highly intuitive manner throughout, to allow quantitatively minded traders, structurers, marketers, salespeople and software engineers to acquire a more rigorous analytical understanding of these products. The book derives, demonstrates and analyses a wide range of models, modelling techniques and numerical algorithms that can be used for constructing valuation models and risk-management methods. Discussions focus on the practical realities of the market and demonstrate the behaviour of models based on real and recent market data across a range of currency pairs. It furthermore offers a clear description of the history and evolution of the different types of barrier options, and elucidates a great deal of industry nomenclature and jargon.

Explicit Implied Volatilities for Multifactor Local-Stochastic Volatility Models

Explicit Implied Volatilities for Multifactor Local-Stochastic Volatility Models PDF Author: Matthew Lorig
Publisher:
ISBN:
Category :
Languages : en
Pages : 36

Get Book Here

Book Description
We consider an asset whose risk-neutral dynamics are described by a general class of local-stochastic volatility models and derive a family of asymptotic expansions for European-style option prices and implied volatilities. Our implied volatility expansions are explicit; they do not require any special functions nor do they require numerical integration. To illustrate the accuracy and versatility of our method, we implement it under five different model dynamics: CEV local volatility, quadratic local volatility, Heston stochastic volatility, 3/2 stochastic volatility, and SABR local-stochastic volatility.

Deep PPDEs for Rough Local Stochastic Volatility

Deep PPDEs for Rough Local Stochastic Volatility PDF Author: Antoine (Jack) Jacquier
Publisher:
ISBN:
Category :
Languages : en
Pages : 21

Get Book Here

Book Description
We introduce the notion of rough local stochastic volatility models, extending the classical concept to the case where volatility is driven by some Volterra process. In this setting, we show that the pricing function is the solution to a path-dependent PDE, for which we develop a numerical scheme based on Deep Learning techniques. Numerical simulations suggest that the latter is extremely efficient, and provides a good alternative to classical Monte Carlo simulations.

Stochastic Volatility and Realized Stochastic Volatility Models

Stochastic Volatility and Realized Stochastic Volatility Models PDF Author: Makoto Takahashi
Publisher: Springer Nature
ISBN: 981990935X
Category : Business & Economics
Languages : en
Pages : 120

Get Book Here

Book Description
This treatise delves into the latest advancements in stochastic volatility models, highlighting the utilization of Markov chain Monte Carlo simulations for estimating model parameters and forecasting the volatility and quantiles of financial asset returns. The modeling of financial time series volatility constitutes a crucial aspect of finance, as it plays a vital role in predicting return distributions and managing risks. Among the various econometric models available, the stochastic volatility model has been a popular choice, particularly in comparison to other models, such as GARCH models, as it has demonstrated superior performance in previous empirical studies in terms of fit, forecasting volatility, and evaluating tail risk measures such as Value-at-Risk and Expected Shortfall. The book also explores an extension of the basic stochastic volatility model, incorporating a skewed return error distribution and a realized volatility measurement equation. The concept of realized volatility, a newly established estimator of volatility using intraday returns data, is introduced, and a comprehensive description of the resulting realized stochastic volatility model is provided. The text contains a thorough explanation of several efficient sampling algorithms for latent log volatilities, as well as an illustration of parameter estimation and volatility prediction through empirical studies utilizing various asset return data, including the yen/US dollar exchange rate, the Dow Jones Industrial Average, and the Nikkei 225 stock index. This publication is highly recommended for readers with an interest in the latest developments in stochastic volatility models and realized stochastic volatility models, particularly in regards to financial risk management.

A Hybrid Stochastic Volatility Model Incorporating Local Volatility

A Hybrid Stochastic Volatility Model Incorporating Local Volatility PDF Author: Yu Tian
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
In this paper, we present our study on a hybrid stochastic volatility model incorporating local volatility for pricing options in the foreign exchange (FX) market. The hybrid stochastic-local volatility model (SLV) could match the implied volatility surface well and meanwhile shows the flexibility for pricing exotic options. The difficulty in implementing the SLV model lies in the calibration of the leverage function, which can be roughly seen as a ratio between the local volatility and the conditional expectation of stochastic volatility. We will illustrate our implementation of the SLV model and show the pricing performance for exotic options.