Transcriptional Regulation in the Eukaryotic Cell Cycle

Transcriptional Regulation in the Eukaryotic Cell Cycle PDF Author: John D. McKinney
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description

Transcriptional Regulation in the Eukaryotic Cell Cycle

Transcriptional Regulation in the Eukaryotic Cell Cycle PDF Author: John D. McKinney
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description


Eukaryotic Gene Regulation

Eukaryotic Gene Regulation PDF Author: Gerald M. Kolodny
Publisher: CRC Press
ISBN: 1351088823
Category : Medical
Languages : en
Pages : 551

Get Book Here

Book Description
The cause of cancer and its many manifestations is at present unknown. Since many of its manifestations, including is control of cell division, appear to represent abnormal patterns of gene expression, studies of the regulation of gene expression nwill provide important insights in the understanding and treatment of cancer. This volume attempts to present some of the recent work on regulation of gene expression in eukaryotic cells.

Eukaryotic Gene Regulation

Eukaryotic Gene Regulation PDF Author: Gerald M. Kolodny
Publisher: CRC Press
ISBN: 1351088831
Category : Medical
Languages : en
Pages : 277

Get Book Here

Book Description
The cause of cancer and its many manifestations is at present unknown. Since many of its manifestations, including is control of cell division, appear to represent abnormal patterns of gene expression, studies of the regulation of gene expression nwill provide important insights in the understanding and treatment of cancer. This volume attempts to present some of the recent work on regulation of gene expression in eukaryotic cells.

Control of M-G1 phase-specific expression in fission yeast

Control of M-G1 phase-specific expression in fission yeast PDF Author: Kyriaki Papadopoulou
Publisher:
ISBN:
Category :
Languages : en
Pages : 299

Get Book Here

Book Description
The mitotic cell cycle underlies propagation of eukaryotic cells, continually duplicating and dividing. The past few years have seen major advances in understanding of the regulatory mechanisms that impose on the cell cycle to tightly co-ordinate progression through its individual phases, safeguarding the timing and integrity of its hallmark events, DNA synthesis and mitosis. Transcription is prominent among these processes, manifesting its importance for cell cycle controls by the large number of eukaryotic genes that are expressed at specific cell cycle times. Certain genes are cell cycle regulated in a number of organisms, suggesting that their phase-specific transcription is important for all eukaryotic cells. The budding and fission yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, have been used extensively as model organisms for the study of the eukaryotic cell cycle and cell cycle-regulated transcription, because the cell cycle machinery is conserved among eukaryotes and they are experimentally tractable. Recent microarray analyses have shown that cell cycle-specific expression is a frequent theme in the two yeasts, identifying consecutive, inter-dependent, waves of transcriptional activity, coinciding with the four main cell cycle transitions; G1-S, S, G2-M and M-G1 phases. Each phase-specific transcriptional wave corresponds to at least one group of co-regulated genes, sharing common cis- and trans- acting elements. The work presented in this thesis delves into the regulatory network that drives phase-specific gene expression during late mitosis-early G1 phase in fission yeast. During this late cell cycle stage, fission yeast and, indeed, every eukaryotic cell, undergo major changes; each completes mitosis and cytokinesis, partitioning its duplicated genetic and cytoplasmic material into two progeny cells, which then themselves prepare for a new round of mitotic cell division. Consistent with their periodic pattern of expression, most of the genes transcribed during the M-G1 interval in S. pombe encode proteins that execute important functions during late mitosis and cytokinesis. A DNA sequence promoter motif, the PCB (Pombe cell cycle box), has been identified in fission yeast that confers M-G1 specific transcription, and is bound by the PBF (PCB binding factor) transcription factor complex. PCB promoter motifs are present in several M-G1 transcribed genes, including cdc15, spo12, sid2+, fin1+, slp1+, ace2+, mid1+/dmf1+ and plo1+, the latter encoding a Polo-like kinase that also regulates M-G1 gene expression and influences the PCB-dependent binding properties of PBF. Three transcription factors, Sep1p and Fkh2p, both forkhead-like transcription factors, and Mbx1p, a MADS-box protein, have been implicated in M-G1 specific gene expression and are thought to be components of PBF. Consistent with Fkh2p and Sep1p regulating M-G1 specific transcription, forkhead-related sequences are present in the genes' promoters. Notably, fkh2+ contains both PCB and forkhead promoter sequences and is transcribed during the M-G1 interval, implying that Fkh2p and Plo1p regulate gene transcription during late mitosis and ensuing passage through cytokinesis via feedback loops. This study provides further evidence about transcriptional regulation late in the fission yeast cell cycle, revealing that the PCB sequence is crucial for M-G1 specific transcription, with forkhead-associated DNA motifs playing a parallel but smaller regulatory role. Consistent with this hypothesis, work here and elsewhere shows that both Fkh2p and Sep1p control phase-specific expression of their co-regulated genes through the PCB and forkhead sequences. Notably, data in this thesis reveal that these two forkhead transcription factors associate with each other in vitro and in vivo and bind in vivo to the PCB promoter regions of M-G1 transcribed genes, including cdc15+ and plo1+, in a cell cycle specific manner, consistent with Fkh2p repressing and Sep1p activating transcription. Furthermore, Fkh2p contacts its own promoter, suggesting that it regulates its own expression via a negative feedback mechanism. The Plo1p kinase is shown here to bind in vivo to Mbx1p throughout the cell cycle and in a manner that requires both its kinase and polo-box domains. In agreement with this observation, Plo1p can phosphorylate in vitro Mbx1p, itself known to become phosphorylated during late mitosis. This is the first time that a Polo-like kinase has been shown to bind and phosphorylate a MADS-box protein in any organism. Moreover, in concert with Plo1p binding and phosphorylating Mbx1p, ChIP assays here reveal that this kinase interacts in vivo with the PCB promoter DNA of M-G1 expressed genes, including cdc15+ and fkh2+, in a cell cycle-dependent manner with a timing that coincides with low levels of expression, but follows promoter binding by Fkh2p. Given that Plo1p has previously been shown to positively influence M-G1 dependent transcription, its cell cycle pattern of promoter contact suggests that this Polo-like kinase functions at the genes' promoters, most-likely via binding and phosphorylation of Mbx1p, to re-stimulate transcription, following repression by Fkh2p. In parallel, these findings suggest that Plo1p regulates its own expression via a positive feedback loop. Overall, the work presented in this thesis unravels crucial regulatory aspects of the transcriptional network that drives M-G1 specific transcription in S. pombe: it suggests an important role for the PCB promoter motif in transcriptional regulation; it proposes that Fkh2p acts as a repressor while Sep1p as an activator of late mitotic transcription; it reveals and proposes novel functions for Plo1p, a conserved Polo-like kinase family member, involving its association with Mbx1p, a MADS box protein, and its cell cycle specific recruitment to PCB promoters of M-G1 transcribed genes. As transcriptional systems, encompassing homologues of most of the components of this S. pombe M-G1 specific transcriptional network operate both in S. cerevisiae and humans, this demonstrates their importance for mitotic cell cycle progression. Thus this work potentially offers new insights into M-G1 specific gene expression in all eukaryotes.

Genetic Expression in the Cell Cycle

Genetic Expression in the Cell Cycle PDF Author: G.M. Padilla
Publisher: Elsevier
ISBN: 0323148921
Category : Science
Languages : en
Pages : 479

Get Book Here

Book Description
Genetic Expression in the Cell Cycle provides an understanding of the molecular mechanisms that govern the expression of genetic information during the cell cycle. The initial five chapters describe the intimate relationships between the supramolecular complexes that form the basic structure of chromatin. Emphasis is placed on the dynamics of cycle-dependent changes in the structural organization of some of these components. Subsequent chapters demonstrate that small nuclear RNAs (SnRNA) are actively involved in gene regulation in eukaryotic cells; discuss the relationship between cell cycle regulation in the yeast Saccharomyces cerevisiae and transcription of ribosomal RNA genes; and describe the use of conditional lethal mutants to study the regulation of the cell cycle of eukaryotic cells. The remaining chapters discuss the concepts and methodologies employed to isolate and study specific cell cycle mutants of S. cerevisiae; the antiproliferative effect of interferon on cultured human fibroblasts; and the role of cell membrane and related subcellular elements in the control of proliferation, differentiation, and cell cycle kinetics.

Regulation of the Eukaryotic Cell Cycle

Regulation of the Eukaryotic Cell Cycle PDF Author: Joan Marsh
Publisher: John Wiley & Sons
ISBN: 0470514337
Category : Science
Languages : en
Pages : 300

Get Book Here

Book Description
Comprised of the latest developments in cell cycle research, it analyzes the principles underlying the control of cell division. Offers a framework for future investigation, especially that aimed toward understanding and treatment of cancer.

Molecular Biology of The Cell

Molecular Biology of The Cell PDF Author: Bruce Alberts
Publisher:
ISBN: 9780815332183
Category : Cytology
Languages : en
Pages : 0

Get Book Here

Book Description


Transcription Factors

Transcription Factors PDF Author: Joseph Locker
Publisher: Garland Science
ISBN: 1135323623
Category : Science
Languages : en
Pages : 502

Get Book Here

Book Description
Transcription factors are important in regulating gene expression, and their analysis is of paramount interest to molecular biologists studying this area. This book looks at the basic machinery of the cell involved in transcription in eukaryotes and factors that control transcription in eukaryotic cells. It examines the regulatory systems that modulate gene expression in all cells,a s well as the more specialized systems that regulate localized gene expression throughout the mammalian organism. Transcription Factors updates classical knowledge with recent advances to provide a full and comprehensive coverage of the field for postgraduates and researchers in molecular biology involved in the study of gene regulation.

Transcription Factors in Eukaryotes

Transcription Factors in Eukaryotes PDF Author: Athanasios Papavassiliou
Publisher: International Thomson Publishing Services
ISBN:
Category : Medical
Languages : en
Pages : 388

Get Book Here

Book Description


The Plant Cell Cycle

The Plant Cell Cycle PDF Author: Dirk Inzé
Publisher: Springer Science & Business Media
ISBN: 9401009368
Category : Science
Languages : en
Pages : 240

Get Book Here

Book Description
In recent years, the study of the plant cell cycle has become of major interest, not only to scientists working on cell division sensu strictu , but also to scientists dealing with plant hormones, development and environmental effects on growth. The book The Plant Cell Cycle is a very timely contribution to this exploding field. Outstanding contributors reviewed, not only knowledge on the most important classes of cell cycle regulators, but also summarized the various processes in which cell cycle control plays a pivotal role. The central role of the cell cycle makes this book an absolute must for plant molecular biologists.