Topological Phases of Matter

Topological Phases of Matter PDF Author: Roderich Moessner
Publisher: Cambridge University Press
ISBN: 1107105536
Category : Mathematics
Languages : en
Pages : 393

Get Book Here

Book Description
This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.

Topological Phases of Matter

Topological Phases of Matter PDF Author: Roderich Moessner
Publisher: Cambridge University Press
ISBN: 1107105536
Category : Mathematics
Languages : en
Pages : 393

Get Book Here

Book Description
This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.

Topological Matter

Topological Matter PDF Author: Dario Bercioux
Publisher: Springer
ISBN: 3319763881
Category : Technology & Engineering
Languages : en
Pages : 274

Get Book Here

Book Description
This book covers basic and advanced aspects in the field of Topological Matter. The chapters are based on the lectures presented during the Topological Matter School 2017. It provides graduate level content introducing the basic concepts of the field, including an introductory session on group theory and topological classification of matter. Different topological phases such as Weyls semi-metals, Majoranas fermions and topological superconductivity are also covered. A review chapter on the major experimental achievements in the field is also provided. The book is suitable not only for master, graduate and young postdoctoral researchers, but also to senior scientists who want to acquaint themselves with the subject.

Poiesis and Enchantment in Topological Matter

Poiesis and Enchantment in Topological Matter PDF Author: Xin Wei Sha
Publisher: MIT Press
ISBN: 0262019515
Category : Art
Languages : en
Pages : 385

Get Book Here

Book Description
A groundbreaking conception of interactive media, inspired by continuity, field, and process, with fresh implications for art, computer science, and philosophy of technology. In this challenging but exhilarating work, Sha Xin Wei argues for an approach to materiality inspired by continuous mathematics and process philosophy. Investigating the implications of such an approach to media and matter in the concrete setting of installation- or event-based art and technology, Sha maps a genealogy of topological media—that is, of an articulation of continuous matter that relinquishes a priori objects, subjects, and egos and yet constitutes value and novelty. Doing so, he explores the ethico-aesthetic consequences of topologically creating performative events and computational media. Sha's interdisciplinary investigation is informed by thinkers ranging from Heraclitus to Alfred North Whitehead to Gilbert Simondon to Alain Badiou to Donna Haraway to Gilles Deleuze and Félix Guattari. Sha traces the critical turn from representation to performance, citing a series of installation-events envisioned and built over the past decade. His analysis offers a fresh way to conceive and articulate interactive materials of new media, one inspired by continuity, field, and philosophy of process. Sha explores the implications of this for philosophy and social studies of technology and science relevant to the creation of research and art. Weaving together philosophy, aesthetics, critical theory, mathematics, and media studies, he shows how thinking about the world in terms of continuity and process can be informed by computational technologies, and what such thinking implies for emerging art and technology.

Topology in Condensed Matter

Topology in Condensed Matter PDF Author: Michael I. Monastyrsky
Publisher: Springer Science & Business Media
ISBN: 3540312641
Category : Science
Languages : en
Pages : 263

Get Book Here

Book Description
This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

Topological Insulators

Topological Insulators PDF Author: Shun-Qing Shen
Publisher: Springer Science & Business Media
ISBN: 364232858X
Category : Technology & Engineering
Languages : en
Pages : 234

Get Book Here

Book Description
Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.

Quantum Information Meets Quantum Matter

Quantum Information Meets Quantum Matter PDF Author: Bei Zeng
Publisher: Springer
ISBN: 1493990845
Category : Computers
Languages : en
Pages : 372

Get Book Here

Book Description
This book approaches condensed matter physics from the perspective of quantum information science, focusing on systems with strong interaction and unconventional order for which the usual condensed matter methods like the Landau paradigm or the free fermion framework break down. Concepts and tools in quantum information science such as entanglement, quantum circuits, and the tensor network representation prove to be highly useful in studying such systems. The goal of this book is to introduce these techniques and show how they lead to a new systematic way of characterizing and classifying quantum phases in condensed matter systems. The first part of the book introduces some basic concepts in quantum information theory which are then used to study the central topic explained in Part II: local Hamiltonians and their ground states. Part III focuses on one of the major new phenomena in strongly interacting systems, the topological order, and shows how it can essentially be defined and characterized in terms of entanglement. Part IV shows that the key entanglement structure of topological states can be captured using the tensor network representation, which provides a powerful tool in the classification of quantum phases. Finally, Part V discusses the exciting prospect at the intersection of quantum information and condensed matter physics – the unification of information and matter. Intended for graduate students and researchers in condensed matter physics, quantum information science and related fields, the book is self-contained and no prior knowledge of these topics is assumed.

A Short Course on Topological Insulators

A Short Course on Topological Insulators PDF Author: János K. Asbóth
Publisher: Springer
ISBN: 3319256076
Category : Science
Languages : en
Pages : 176

Get Book Here

Book Description
This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.

Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors PDF Author: B. Andrei Bernevig
Publisher: Princeton University Press
ISBN: 1400846730
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.

Topology In Condensed Matter: An Introduction

Topology In Condensed Matter: An Introduction PDF Author: Miguel A N Araujo
Publisher: World Scientific
ISBN: 9811237239
Category : Science
Languages : en
Pages : 276

Get Book Here

Book Description
This text serves as a pedagogical introduction to the theoretical concepts on application of topology in condensed matter systems. It covers an introduction to basic concepts of topology, emphasizes the relation of geometric concepts such as the Berry phase to topology, having in mind applications in condensed matter. In addition to describing two basic systems such as topological insulators and topological superconductors, it also reviews topological spin systems and photonic systems. It also describes the use of quantum information concepts in the context of topological phases and phase transitions, and the effect of non-equilibrium perturbations on topological systems.This book provides a comprehensive introduction to topological insulators, topological superconductors and topological semimetals. It includes all the mathematical background required for the subject. There are very few books with such a coverage in the market.

Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter

Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter PDF Author: Abhijeet Alase
Publisher: Springer Nature
ISBN: 3030319601
Category : Science
Languages : en
Pages : 213

Get Book Here

Book Description
This thesis extends our understanding of systems of independent electrons by developing a generalization of Bloch’s Theorem which is applicable whenever translational symmetry is broken solely due to arbitrary boundary conditions. The thesis begins with a historical overview of topological condensed matter physics, placing the work in context, before introducing the generalized form of Bloch's Theorem. A cornerstone of electronic band structure and transport theory in crystalline matter, Bloch's Theorem is generalized via a reformulation of the diagonalization problem in terms of corner-modified block-Toeplitz matrices and, physically, by allowing the crystal momentum to take complex values. This formulation provides exact expressions for all the energy eigenvalues and eigenstates of the single-particle Hamiltonian. By precisely capturing the interplay between bulk and boundary properties, this affords an exact analysis of several prototypical models relevant to symmetry-protected topological phases of matter, including a characterization of zero-energy localized boundary excitations in both topological insulators and superconductors. Notably, in combination with suitable matrix factorization techniques, the generalized Bloch Hamiltonian is also shown to provide a natural starting point for a unified derivation of bulk-boundary correspondence for all symmetry classes in one dimension.