Author: Boris L. Feigin
Publisher: American Mathematical Soc.
ISBN: 9780821810842
Category : Mathematics
Languages : en
Pages : 214
Book Description
Presents the first collection of articles consisting entirely of work by the faculty and students at the Higher Mathematics College at the Independent University of Moscow. The 11 contributions cover symmetry groups of regular polyhedra over finite fields, vector bundles on an elliptical curve and Skylanin algebras, Tutte decomposition for graphs and symmetric matrices, and invarians and homology of spaces of knots in arbitrary manifolds. The focus of the text is on quantum groups and low-dimensional topology. No index. Annotation copyrighted by Book News, Inc., Portland, OR.
Topics in Quantum Groups and Finite-Type Invariants
Author: Boris L. Feigin
Publisher: American Mathematical Soc.
ISBN: 9780821810842
Category : Mathematics
Languages : en
Pages : 214
Book Description
Presents the first collection of articles consisting entirely of work by the faculty and students at the Higher Mathematics College at the Independent University of Moscow. The 11 contributions cover symmetry groups of regular polyhedra over finite fields, vector bundles on an elliptical curve and Skylanin algebras, Tutte decomposition for graphs and symmetric matrices, and invarians and homology of spaces of knots in arbitrary manifolds. The focus of the text is on quantum groups and low-dimensional topology. No index. Annotation copyrighted by Book News, Inc., Portland, OR.
Publisher: American Mathematical Soc.
ISBN: 9780821810842
Category : Mathematics
Languages : en
Pages : 214
Book Description
Presents the first collection of articles consisting entirely of work by the faculty and students at the Higher Mathematics College at the Independent University of Moscow. The 11 contributions cover symmetry groups of regular polyhedra over finite fields, vector bundles on an elliptical curve and Skylanin algebras, Tutte decomposition for graphs and symmetric matrices, and invarians and homology of spaces of knots in arbitrary manifolds. The focus of the text is on quantum groups and low-dimensional topology. No index. Annotation copyrighted by Book News, Inc., Portland, OR.
Quantum Invariants
Author: Tomotada Ohtsuki
Publisher: World Scientific
ISBN: 9789812811172
Category : Invariants
Languages : en
Pages : 516
Book Description
This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The ChernOCoSimons field theory and the WessOCoZuminoOCoWitten model are described as the physical background of the invariants. Contents: Knots and Polynomial Invariants; Braids and Representations of the Braid Groups; Operator Invariants of Tangles via Sliced Diagrams; Ribbon Hopf Algebras and Invariants of Links; Monodromy Representations of the Braid Groups Derived from the KnizhnikOCoZamolodchikov Equation; The Kontsevich Invariant; Vassiliev Invariants; Quantum Invariants of 3-Manifolds; Perturbative Invariants of Knots and 3-Manifolds; The LMO Invariant; Finite Type Invariants of Integral Homology 3-Spheres. Readership: Researchers, lecturers and graduate students in geometry, topology and mathematical physics."
Publisher: World Scientific
ISBN: 9789812811172
Category : Invariants
Languages : en
Pages : 516
Book Description
This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The ChernOCoSimons field theory and the WessOCoZuminoOCoWitten model are described as the physical background of the invariants. Contents: Knots and Polynomial Invariants; Braids and Representations of the Braid Groups; Operator Invariants of Tangles via Sliced Diagrams; Ribbon Hopf Algebras and Invariants of Links; Monodromy Representations of the Braid Groups Derived from the KnizhnikOCoZamolodchikov Equation; The Kontsevich Invariant; Vassiliev Invariants; Quantum Invariants of 3-Manifolds; Perturbative Invariants of Knots and 3-Manifolds; The LMO Invariant; Finite Type Invariants of Integral Homology 3-Spheres. Readership: Researchers, lecturers and graduate students in geometry, topology and mathematical physics."
New Developments in Singularity Theory
Author: Dirk Wiersma
Publisher: Springer Science & Business Media
ISBN: 9401008345
Category : Mathematics
Languages : en
Pages : 470
Book Description
Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps.
Publisher: Springer Science & Business Media
ISBN: 9401008345
Category : Mathematics
Languages : en
Pages : 470
Book Description
Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps.
Introduction to Vassiliev Knot Invariants
Author: S. Chmutov
Publisher: Cambridge University Press
ISBN: 1107020832
Category : Mathematics
Languages : en
Pages : 521
Book Description
A detailed exposition of the theory with an emphasis on its combinatorial aspects.
Publisher: Cambridge University Press
ISBN: 1107020832
Category : Mathematics
Languages : en
Pages : 521
Book Description
A detailed exposition of the theory with an emphasis on its combinatorial aspects.
Quantum Algebras and Poisson Geometry in Mathematical Physics
Author: Mikhail Vladimirovich Karasev
Publisher: American Mathematical Soc.
ISBN: 9780821840405
Category : Computers
Languages : en
Pages : 296
Book Description
Presents applications of Poisson geometry to some fundamental well-known problems in mathematical physics. This volume is suitable for graduate students and researchers interested in mathematical physics. It uses methods such as: unexpected algebras with non-Lie commutation relations, dynamical systems theory, and semiclassical asymptotics.
Publisher: American Mathematical Soc.
ISBN: 9780821840405
Category : Computers
Languages : en
Pages : 296
Book Description
Presents applications of Poisson geometry to some fundamental well-known problems in mathematical physics. This volume is suitable for graduate students and researchers interested in mathematical physics. It uses methods such as: unexpected algebras with non-Lie commutation relations, dynamical systems theory, and semiclassical asymptotics.
Moscow Seminar on Mathematical Physics, II
Author: Yu. A. Neretin
Publisher: American Mathematical Soc.
ISBN: 9780821843710
Category : Mathematics
Languages : en
Pages : 228
Book Description
The Institute for Theoretical and Experimental Physics (ITEP) is internationally recognized for achievements in various branches of theoretical physics. For many years, the seminars at ITEP have been among the main centers of scientific life in Moscow. This volume is a collection of articles by participants of the seminar on mathematical physics that has been held at ITEP since 1983. This is the second such collection; the first was published in the same series, AMS Translations, Series 2, vol. 191. The papers in the volume are devoted to several mathematical topics that strongly influenced modern theoretical physics. Among these topics are cohomology and representations of infinite Lie algebras and superalgebras, Hitchin and Knizhnik-Zamolodchikov-Bernard systems, and the theory of $D$-modules. The book is intended for graduate students and research mathematicians working in algebraic geometry, representation theory, and mathematical physics.
Publisher: American Mathematical Soc.
ISBN: 9780821843710
Category : Mathematics
Languages : en
Pages : 228
Book Description
The Institute for Theoretical and Experimental Physics (ITEP) is internationally recognized for achievements in various branches of theoretical physics. For many years, the seminars at ITEP have been among the main centers of scientific life in Moscow. This volume is a collection of articles by participants of the seminar on mathematical physics that has been held at ITEP since 1983. This is the second such collection; the first was published in the same series, AMS Translations, Series 2, vol. 191. The papers in the volume are devoted to several mathematical topics that strongly influenced modern theoretical physics. Among these topics are cohomology and representations of infinite Lie algebras and superalgebras, Hitchin and Knizhnik-Zamolodchikov-Bernard systems, and the theory of $D$-modules. The book is intended for graduate students and research mathematicians working in algebraic geometry, representation theory, and mathematical physics.
Nonlinear Partial Differential Equations and Related Topics
Author: Arina A. Arkhipova
Publisher: American Mathematical Soc.
ISBN: 0821849972
Category : Mathematics
Languages : en
Pages : 268
Book Description
"St. Petersburg PDE seminar, special session dedicated to N.N. Uraltseva's [75th] anniversary, June 2009"--P. [vi].
Publisher: American Mathematical Soc.
ISBN: 0821849972
Category : Mathematics
Languages : en
Pages : 268
Book Description
"St. Petersburg PDE seminar, special session dedicated to N.N. Uraltseva's [75th] anniversary, June 2009"--P. [vi].
Noncommutative Geometry and Representation Theory in Mathematical Physics
Author: Jürgen Fuchs
Publisher: American Mathematical Soc.
ISBN: 0821837184
Category : Mathematics
Languages : en
Pages : 402
Book Description
Mathematics provides a language in which to formulate the laws that govern nature. It is a language proven to be both powerful and effective. In the quest for a deeper understanding of the fundamental laws of physics, one is led to theories that are increasingly difficult to put to the test. In recent years, many novel questions have emerged in mathematical physics, particularly in quantum field theory. Indeed, several areas of mathematics have lately become increasingly influentialin physics and, in turn, have become influenced by developments in physics. Over the last two decades, interactions between mathematicians and physicists have increased enormously and have resulted in a fruitful cross-fertilization of the two communities. This volume contains the plenary talks fromthe international symposium on Noncommutative Geometry and Representation Theory in Mathematical Physics held at Karlstad University (Sweden) as a satellite conference to the Fourth European Congress of Mathematics. The scope of the volume is large and its content is relevant to various scientific communities interested in noncommutative geometry and representation theory. It offers a comprehensive view of the state of affairs for these two branches of mathematical physics. The book is suitablefor graduate students and researchers interested in mathematical physics.
Publisher: American Mathematical Soc.
ISBN: 0821837184
Category : Mathematics
Languages : en
Pages : 402
Book Description
Mathematics provides a language in which to formulate the laws that govern nature. It is a language proven to be both powerful and effective. In the quest for a deeper understanding of the fundamental laws of physics, one is led to theories that are increasingly difficult to put to the test. In recent years, many novel questions have emerged in mathematical physics, particularly in quantum field theory. Indeed, several areas of mathematics have lately become increasingly influentialin physics and, in turn, have become influenced by developments in physics. Over the last two decades, interactions between mathematicians and physicists have increased enormously and have resulted in a fruitful cross-fertilization of the two communities. This volume contains the plenary talks fromthe international symposium on Noncommutative Geometry and Representation Theory in Mathematical Physics held at Karlstad University (Sweden) as a satellite conference to the Fourth European Congress of Mathematics. The scope of the volume is large and its content is relevant to various scientific communities interested in noncommutative geometry and representation theory. It offers a comprehensive view of the state of affairs for these two branches of mathematical physics. The book is suitablefor graduate students and researchers interested in mathematical physics.
Selected Papers on Differential Equations and Analysis
Author:
Publisher: American Mathematical Soc.
ISBN: 9780821839270
Category : Mathematics
Languages : en
Pages : 168
Book Description
This volume contains translations of papers that originally appeared in the Japanese journal Sugaku. The papers range over a variety of topics, including differential equations with free boundary, singular integral operators, operator algebras, and relations between the Brownian motion on a manifold with function theory. The volume is suitable for graduate students and research mathematicians interested in analysis and differential equations."
Publisher: American Mathematical Soc.
ISBN: 9780821839270
Category : Mathematics
Languages : en
Pages : 168
Book Description
This volume contains translations of papers that originally appeared in the Japanese journal Sugaku. The papers range over a variety of topics, including differential equations with free boundary, singular integral operators, operator algebras, and relations between the Brownian motion on a manifold with function theory. The volume is suitable for graduate students and research mathematicians interested in analysis and differential equations."
Nonlinear Equations and Spectral Theory
Author: M. S. Birman
Publisher: American Mathematical Soc.
ISBN: 9780821890745
Category : Mathematics
Languages : en
Pages : 268
Book Description
Translations of articles on mathematics appearing in various Russian mathematical serials.
Publisher: American Mathematical Soc.
ISBN: 9780821890745
Category : Mathematics
Languages : en
Pages : 268
Book Description
Translations of articles on mathematics appearing in various Russian mathematical serials.