Author: Sigurdur Helgason
Publisher: Springer Science & Business Media
ISBN: 1441960546
Category : Mathematics
Languages : en
Pages : 309
Book Description
In this text, integral geometry deals with Radon’s problem of representing a function on a manifold in terms of its integrals over certain submanifolds—hence the term the Radon transform. Examples and far-reaching generalizations lead to fundamental problems such as: (i) injectivity, (ii) inversion formulas, (iii) support questions, (iv) applications (e.g., to tomography, partial di erential equations and group representations). For the case of the plane, the inversion theorem and the support theorem have had major applications in medicine through tomography and CAT scanning. While containing some recent research, the book is aimed at beginning graduate students for classroom use or self-study. A number of exercises point to further results with documentation. From the reviews: “Integral Geometry is a fascinating area, where numerous branches of mathematics meet together. the contents of the book is concentrated around the duality and double vibration, which is realized through the masterful treatment of a variety of examples. the book is written by an expert, who has made fundamental contributions to the area.” —Boris Rubin, Louisiana State University
Integral Geometry and Radon Transforms
Author: Sigurdur Helgason
Publisher: Springer Science & Business Media
ISBN: 1441960546
Category : Mathematics
Languages : en
Pages : 309
Book Description
In this text, integral geometry deals with Radon’s problem of representing a function on a manifold in terms of its integrals over certain submanifolds—hence the term the Radon transform. Examples and far-reaching generalizations lead to fundamental problems such as: (i) injectivity, (ii) inversion formulas, (iii) support questions, (iv) applications (e.g., to tomography, partial di erential equations and group representations). For the case of the plane, the inversion theorem and the support theorem have had major applications in medicine through tomography and CAT scanning. While containing some recent research, the book is aimed at beginning graduate students for classroom use or self-study. A number of exercises point to further results with documentation. From the reviews: “Integral Geometry is a fascinating area, where numerous branches of mathematics meet together. the contents of the book is concentrated around the duality and double vibration, which is realized through the masterful treatment of a variety of examples. the book is written by an expert, who has made fundamental contributions to the area.” —Boris Rubin, Louisiana State University
Publisher: Springer Science & Business Media
ISBN: 1441960546
Category : Mathematics
Languages : en
Pages : 309
Book Description
In this text, integral geometry deals with Radon’s problem of representing a function on a manifold in terms of its integrals over certain submanifolds—hence the term the Radon transform. Examples and far-reaching generalizations lead to fundamental problems such as: (i) injectivity, (ii) inversion formulas, (iii) support questions, (iv) applications (e.g., to tomography, partial di erential equations and group representations). For the case of the plane, the inversion theorem and the support theorem have had major applications in medicine through tomography and CAT scanning. While containing some recent research, the book is aimed at beginning graduate students for classroom use or self-study. A number of exercises point to further results with documentation. From the reviews: “Integral Geometry is a fascinating area, where numerous branches of mathematics meet together. the contents of the book is concentrated around the duality and double vibration, which is realized through the masterful treatment of a variety of examples. the book is written by an expert, who has made fundamental contributions to the area.” —Boris Rubin, Louisiana State University
Reconstructive Integral Geometry
Author: Victor Palamodov
Publisher: Springer Science & Business Media
ISBN: 9783764371296
Category : Mathematics
Languages : en
Pages : 184
Book Description
This book covers facts and methods for the reconstruction of a function in a real affine or projective space from data of integrals, particularly over lines, planes, and spheres. Recent results stress explicit analytic methods. Coverage includes the relations between algebraic integral geometry and partial differential equations. The first half of the book includes the ray, the spherical mean transforms in the plane or in 3-space, and inversion from incomplete data.
Publisher: Springer Science & Business Media
ISBN: 9783764371296
Category : Mathematics
Languages : en
Pages : 184
Book Description
This book covers facts and methods for the reconstruction of a function in a real affine or projective space from data of integrals, particularly over lines, planes, and spheres. Recent results stress explicit analytic methods. Coverage includes the relations between algebraic integral geometry and partial differential equations. The first half of the book includes the ray, the spherical mean transforms in the plane or in 3-space, and inversion from incomplete data.
Selected Topics in Integral Geometry
Author: Izrail_ Moiseevich Gel_fand
Publisher: American Mathematical Soc.
ISBN: 9780821898048
Category : Mathematics
Languages : en
Pages : 192
Book Description
The miracle of integral geometry is that it is often possible to recover a function on a manifold just from the knowledge of its integrals over certain submanifolds. The founding example is the Radon transform, introduced at the beginning of the 20th century. Since then, many other transforms were found, and the general theory was developed. Moreover, many important practical applications were discovered, the best known, but by no means the only one, being to medical tomography. The present book is a general introduction to integral geometry, the first from this point of view for almost four decades. The authors, all leading experts in the field, represent one of the most influential schools in integral geometry. The book presents in detail basic examples of integral geometry problems, such as the Radon transform on the plane and in space, the John transform, the Minkowski-Funk transform, integral geometry on the hyperbolic plane and in the hyperbolic space, the horospherical transform and its relation to representations of $SL(2,\mathbb C)$, integral geometry on quadrics, etc. The study of these examples allows the authors to explain important general topics of integral geometry, such as the Cavalieri conditions, local and nonlocal inversion formulas, and overdetermined problems. Many of the results in the book were obtained by the authors in the course of their career-long work in integral geometry.
Publisher: American Mathematical Soc.
ISBN: 9780821898048
Category : Mathematics
Languages : en
Pages : 192
Book Description
The miracle of integral geometry is that it is often possible to recover a function on a manifold just from the knowledge of its integrals over certain submanifolds. The founding example is the Radon transform, introduced at the beginning of the 20th century. Since then, many other transforms were found, and the general theory was developed. Moreover, many important practical applications were discovered, the best known, but by no means the only one, being to medical tomography. The present book is a general introduction to integral geometry, the first from this point of view for almost four decades. The authors, all leading experts in the field, represent one of the most influential schools in integral geometry. The book presents in detail basic examples of integral geometry problems, such as the Radon transform on the plane and in space, the John transform, the Minkowski-Funk transform, integral geometry on the hyperbolic plane and in the hyperbolic space, the horospherical transform and its relation to representations of $SL(2,\mathbb C)$, integral geometry on quadrics, etc. The study of these examples allows the authors to explain important general topics of integral geometry, such as the Cavalieri conditions, local and nonlocal inversion formulas, and overdetermined problems. Many of the results in the book were obtained by the authors in the course of their career-long work in integral geometry.
Stochastic and Integral Geometry
Author: R.V. Ambartzumian
Publisher: Springer Science & Business Media
ISBN: 9400939213
Category : Mathematics
Languages : en
Pages : 135
Book Description
Publisher: Springer Science & Business Media
ISBN: 9400939213
Category : Mathematics
Languages : en
Pages : 135
Book Description
Integral Points on Algebraic Varieties
Author: Pietro Corvaja
Publisher: Springer
ISBN: 9811026483
Category : Mathematics
Languages : en
Pages : 82
Book Description
This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geometrical perspective. It presents recent results not available in textbooks and also new viewpoints on classical material. In some instances, proofs have been replaced by a detailed analysis of particular cases, referring to the quoted papers for complete proofs. A central role is played by Siegel’s finiteness theorem for integral points on curves. The book ends with the analysis of integral points on surfaces.
Publisher: Springer
ISBN: 9811026483
Category : Mathematics
Languages : en
Pages : 82
Book Description
This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geometrical perspective. It presents recent results not available in textbooks and also new viewpoints on classical material. In some instances, proofs have been replaced by a detailed analysis of particular cases, referring to the quoted papers for complete proofs. A central role is played by Siegel’s finiteness theorem for integral points on curves. The book ends with the analysis of integral points on surfaces.
The Radon Transform
Author: Sigurdur Helgason
Publisher: Springer Science & Business Media
ISBN: 9780817641092
Category : Mathematics
Languages : en
Pages : 214
Book Description
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.
Publisher: Springer Science & Business Media
ISBN: 9780817641092
Category : Mathematics
Languages : en
Pages : 214
Book Description
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.
Integral Geometry Methods in the Geometrical Langlands Program
Author: Prof. Dr. Francisco Bulnes
Publisher: Scientific Research Publishing, Inc. USA
ISBN: 1618961403
Category : Mathematics
Languages : en
Pages : 195
Book Description
The book is divided on the studied aspects in integral geometry and that are of interest in field theory, at least, to the solution or obtaining of integrals to the field equations corresponding to the moduli stacks planted. In the chapters 1, 2, 3, 4, are exposed the generalizations of the Penrose transforms with a good D-modules theory in the derived categories context and their deformations. In the chapters 5, and 6, are exposed and discussed the different classification problems and their implications in the differential operators to the field equations. Finally, in the chapters 7, and 8 are exposed the aspects of the geometrical ramification of field ramification going behold the holomorphicity. In the end of the book are included several research exercises that can be discussed and exposed inside postgraduate courses in derived geometry or related as derived categories or categories on commutative and non-commutative rings.
Publisher: Scientific Research Publishing, Inc. USA
ISBN: 1618961403
Category : Mathematics
Languages : en
Pages : 195
Book Description
The book is divided on the studied aspects in integral geometry and that are of interest in field theory, at least, to the solution or obtaining of integrals to the field equations corresponding to the moduli stacks planted. In the chapters 1, 2, 3, 4, are exposed the generalizations of the Penrose transforms with a good D-modules theory in the derived categories context and their deformations. In the chapters 5, and 6, are exposed and discussed the different classification problems and their implications in the differential operators to the field equations. Finally, in the chapters 7, and 8 are exposed the aspects of the geometrical ramification of field ramification going behold the holomorphicity. In the end of the book are included several research exercises that can be discussed and exposed inside postgraduate courses in derived geometry or related as derived categories or categories on commutative and non-commutative rings.
Groups and Geometric Analysis
Author: Sigurdur Helgason
Publisher: American Mathematical Society
ISBN: 0821832115
Category : Mathematics
Languages : en
Pages : 667
Book Description
Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.
Publisher: American Mathematical Society
ISBN: 0821832115
Category : Mathematics
Languages : en
Pages : 667
Book Description
Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.
Elementary Topics in Differential Geometry
Author: J. A. Thorpe
Publisher: Springer Science & Business Media
ISBN: 1461261538
Category : Mathematics
Languages : en
Pages : 263
Book Description
In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.
Publisher: Springer Science & Business Media
ISBN: 1461261538
Category : Mathematics
Languages : en
Pages : 263
Book Description
In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.
Classical Topics in Discrete Geometry
Author: Károly Bezdek
Publisher: Springer Science & Business Media
ISBN: 1441906002
Category : Mathematics
Languages : en
Pages : 171
Book Description
Geometry is a classical core part of mathematics which, with its birth, marked the beginning of the mathematical sciences. Thus, not surprisingly, geometry has played a key role in many important developments of mathematics in the past, as well as in present times. While focusing on modern mathematics, one has to emphasize the increasing role of discrete mathematics, or equivalently, the broad movement to establish discrete analogues of major components of mathematics. In this way, the works of a number of outstanding mathema- cians including H. S. M. Coxeter (Canada), C. A. Rogers (United Kingdom), and L. Fejes-T oth (Hungary) led to the new and fast developing eld called discrete geometry. One can brie y describe this branch of geometry as the study of discrete arrangements of geometric objects in Euclidean, as well as in non-Euclidean spaces. This, as a classical core part, also includes the theory of polytopes and tilings in addition to the theory of packing and covering. D- crete geometry is driven by problems often featuring a very clear visual and applied character. The solutions use a variety of methods of modern mat- matics, including convex and combinatorial geometry, coding theory, calculus of variations, di erential geometry, group theory, and topology, as well as geometric analysis and number theory.
Publisher: Springer Science & Business Media
ISBN: 1441906002
Category : Mathematics
Languages : en
Pages : 171
Book Description
Geometry is a classical core part of mathematics which, with its birth, marked the beginning of the mathematical sciences. Thus, not surprisingly, geometry has played a key role in many important developments of mathematics in the past, as well as in present times. While focusing on modern mathematics, one has to emphasize the increasing role of discrete mathematics, or equivalently, the broad movement to establish discrete analogues of major components of mathematics. In this way, the works of a number of outstanding mathema- cians including H. S. M. Coxeter (Canada), C. A. Rogers (United Kingdom), and L. Fejes-T oth (Hungary) led to the new and fast developing eld called discrete geometry. One can brie y describe this branch of geometry as the study of discrete arrangements of geometric objects in Euclidean, as well as in non-Euclidean spaces. This, as a classical core part, also includes the theory of polytopes and tilings in addition to the theory of packing and covering. D- crete geometry is driven by problems often featuring a very clear visual and applied character. The solutions use a variety of methods of modern mat- matics, including convex and combinatorial geometry, coding theory, calculus of variations, di erential geometry, group theory, and topology, as well as geometric analysis and number theory.