Topics in Classical Number Theory

Topics in Classical Number Theory PDF Author: Gábor Halász
Publisher:
ISBN:
Category : Number theory
Languages : en
Pages : 848

Get Book Here

Book Description

Topics in Classical Number Theory

Topics in Classical Number Theory PDF Author: Gábor Halász
Publisher:
ISBN:
Category : Number theory
Languages : en
Pages : 848

Get Book Here

Book Description


A Classical Introduction to Modern Number Theory

A Classical Introduction to Modern Number Theory PDF Author: K. Ireland
Publisher: Springer Science & Business Media
ISBN: 1475717792
Category : Mathematics
Languages : en
Pages : 355

Get Book Here

Book Description
This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.

Topics from the Theory of Numbers

Topics from the Theory of Numbers PDF Author: Emil Grosswald
Publisher: Springer Science & Business Media
ISBN: 0817648380
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald’s classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate.

1001 Problems in Classical Number Theory

1001 Problems in Classical Number Theory PDF Author: Armel Mercier
Publisher: American Mathematical Soc.
ISBN: 9780821886182
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description


Topics in Multiplicative Number Theory

Topics in Multiplicative Number Theory PDF Author: Hugh L. Montgomery
Publisher: Springer
ISBN: 354036935X
Category : Mathematics
Languages : en
Pages : 187

Get Book Here

Book Description


Classical Theory of Algebraic Numbers

Classical Theory of Algebraic Numbers PDF Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676

Get Book Here

Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.

Additive Number Theory The Classical Bases

Additive Number Theory The Classical Bases PDF Author: Melvyn B. Nathanson
Publisher: Springer Science & Business Media
ISBN: 9780387946566
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
[Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel?Ill additive number theory, not for experts who already know it. For this reason, proofs include many "unnecessary" and "obvious" steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.

Multiplicative Number Theory I

Multiplicative Number Theory I PDF Author: Hugh L. Montgomery
Publisher: Cambridge University Press
ISBN: 9780521849036
Category : Mathematics
Languages : en
Pages : 574

Get Book Here

Book Description
A 2006 text based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State.

Disquisitiones Arithmeticae

Disquisitiones Arithmeticae PDF Author: Carl Friedrich Gauss
Publisher: Springer
ISBN: 1493975609
Category : Mathematics
Languages : en
Pages : 491

Get Book Here

Book Description
Carl Friedrich Gauss’s textbook, Disquisitiones arithmeticae, published in 1801 (Latin), remains to this day a true masterpiece of mathematical examination. .

Fundamentals of Number Theory

Fundamentals of Number Theory PDF Author: William J. LeVeque
Publisher: Courier Corporation
ISBN: 0486141500
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.