Author: Robert Boyd
Publisher: CRC Press
ISBN: 9780849323393
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
Written for the practicing electronics professional, Tolerance Analysis of Electronic Circuits Using MATHCADä offers a comprehensive, step-by-step treatment of methods used to perform analyses essential to the design process of circuit cards and systems of cards, including: worst-case analysis, limits for production testing, component stress analysis, determining if a design meets specification limits, and manufacturing yield analysis Using a practical approach that allows engineers and technicians to put the techniques directly into practice, the author presents the mathematical procedures used to determine performance limits. The topics and techniques discussed include extreme value and root-sum-square analysis using symmetric and asymmetric tolerance, Monte Carlo analysis using normal and uniform distributions, sensitivity formulas, tolerance analyses of opamp offsets, and anomalies of high-Q ac circuits.
Tolerance Analysis of Electronic Circuits Using MATHCAD
Author: Robert Boyd
Publisher: CRC Press
ISBN: 9780849323393
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
Written for the practicing electronics professional, Tolerance Analysis of Electronic Circuits Using MATHCADä offers a comprehensive, step-by-step treatment of methods used to perform analyses essential to the design process of circuit cards and systems of cards, including: worst-case analysis, limits for production testing, component stress analysis, determining if a design meets specification limits, and manufacturing yield analysis Using a practical approach that allows engineers and technicians to put the techniques directly into practice, the author presents the mathematical procedures used to determine performance limits. The topics and techniques discussed include extreme value and root-sum-square analysis using symmetric and asymmetric tolerance, Monte Carlo analysis using normal and uniform distributions, sensitivity formulas, tolerance analyses of opamp offsets, and anomalies of high-Q ac circuits.
Publisher: CRC Press
ISBN: 9780849323393
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
Written for the practicing electronics professional, Tolerance Analysis of Electronic Circuits Using MATHCADä offers a comprehensive, step-by-step treatment of methods used to perform analyses essential to the design process of circuit cards and systems of cards, including: worst-case analysis, limits for production testing, component stress analysis, determining if a design meets specification limits, and manufacturing yield analysis Using a practical approach that allows engineers and technicians to put the techniques directly into practice, the author presents the mathematical procedures used to determine performance limits. The topics and techniques discussed include extreme value and root-sum-square analysis using symmetric and asymmetric tolerance, Monte Carlo analysis using normal and uniform distributions, sensitivity formulas, tolerance analyses of opamp offsets, and anomalies of high-Q ac circuits.
Tolerance Analysis of Electronic Circuits Using MATHCAD
Author: Robert Boyd
Publisher: CRC Press
ISBN: 1482224070
Category : Technology & Engineering
Languages : en
Pages : 215
Book Description
Written for the practicing electronics professional, Tolerance Analysis of Electronic Circuits Using MATHCADä offers a comprehensive, step-by-step treatment of methods used to perform analyses essential to the design process of circuit cards and systems of cards, including: worst-case analysis, limits for production testing, component stress analysis, determining if a design meets specification limits, and manufacturing yield analysis Using a practical approach that allows engineers and technicians to put the techniques directly into practice, the author presents the mathematical procedures used to determine performance limits. The topics and techniques discussed include extreme value and root-sum-square analysis using symmetric and asymmetric tolerance, Monte Carlo analysis using normal and uniform distributions, sensitivity formulas, tolerance analyses of opamp offsets, and anomalies of high-Q ac circuits.
Publisher: CRC Press
ISBN: 1482224070
Category : Technology & Engineering
Languages : en
Pages : 215
Book Description
Written for the practicing electronics professional, Tolerance Analysis of Electronic Circuits Using MATHCADä offers a comprehensive, step-by-step treatment of methods used to perform analyses essential to the design process of circuit cards and systems of cards, including: worst-case analysis, limits for production testing, component stress analysis, determining if a design meets specification limits, and manufacturing yield analysis Using a practical approach that allows engineers and technicians to put the techniques directly into practice, the author presents the mathematical procedures used to determine performance limits. The topics and techniques discussed include extreme value and root-sum-square analysis using symmetric and asymmetric tolerance, Monte Carlo analysis using normal and uniform distributions, sensitivity formulas, tolerance analyses of opamp offsets, and anomalies of high-Q ac circuits.
Node List Tolerance Analysis
Author: Robert R. Boyd
Publisher: CRC Press
ISBN: 1351837869
Category : Technology & Engineering
Languages : en
Pages : 295
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Publisher: CRC Press
ISBN: 1351837869
Category : Technology & Engineering
Languages : en
Pages : 295
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Node List Tolerance Analysis
Author: Robert R. Boyd
Publisher: CRC Press
ISBN: 1420006290
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Publisher: CRC Press
ISBN: 1420006290
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Journal of Information Science and Engineering
Author:
Publisher:
ISBN:
Category : Computer science
Languages : en
Pages : 610
Book Description
Publisher:
ISBN:
Category : Computer science
Languages : en
Pages : 610
Book Description
American Book Publishing Record
Author:
Publisher:
ISBN:
Category : American literature
Languages : en
Pages : 1206
Book Description
Publisher:
ISBN:
Category : American literature
Languages : en
Pages : 1206
Book Description
Book Review Index
Author:
Publisher:
ISBN:
Category : Books
Languages : en
Pages : 1520
Book Description
Vols. 8-10 of the 1965-1984 master cumulation constitute a title index.
Publisher:
ISBN:
Category : Books
Languages : en
Pages : 1520
Book Description
Vols. 8-10 of the 1965-1984 master cumulation constitute a title index.
Books in Print Supplement
Author:
Publisher:
ISBN:
Category : American literature
Languages : en
Pages : 2576
Book Description
Publisher:
ISBN:
Category : American literature
Languages : en
Pages : 2576
Book Description
Tolerance Analysis of Electronic Circuits Using MATLAB
Author: Robert Boyd
Publisher: Routledge
ISBN: 135140802X
Category : History
Languages : en
Pages : 158
Book Description
Written for the practicing electronics professional, Tolerance Analysis of Electronic Circuits Using MATLAB offers a comprehensive, step-by-step treatment of methods used to perform analyses essential to the design process of circuit cards and systems of cards, including: worst-case analysis, limits for production testing, component stress analysis, determining if a design meets specification limits, and manufacturing yield analysis
Publisher: Routledge
ISBN: 135140802X
Category : History
Languages : en
Pages : 158
Book Description
Written for the practicing electronics professional, Tolerance Analysis of Electronic Circuits Using MATLAB offers a comprehensive, step-by-step treatment of methods used to perform analyses essential to the design process of circuit cards and systems of cards, including: worst-case analysis, limits for production testing, component stress analysis, determining if a design meets specification limits, and manufacturing yield analysis
Node List Tolerance Analysis
Author: Robert R. Boyd
Publisher: CRC Press
ISBN: 9780849370281
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Publisher: CRC Press
ISBN: 9780849370281
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.