Author:
Publisher:
ISBN:
Category : Fracture mechanics
Languages : en
Pages : 208
Book Description
Time Dependent Fracture of Materials at Elevated Temperature
Author:
Publisher:
ISBN:
Category : Fracture mechanics
Languages : en
Pages : 208
Book Description
Publisher:
ISBN:
Category : Fracture mechanics
Languages : en
Pages : 208
Book Description
Fracture at High Temperatures
Author: Hermann Riedel
Publisher: Springer
ISBN: 3642829619
Category : Technology & Engineering
Languages : en
Pages : 430
Book Description
Publisher: Springer
ISBN: 3642829619
Category : Technology & Engineering
Languages : en
Pages : 430
Book Description
Elevated Temperature Effects on Fatigue and Fracture
Author: Robert S. Piascik
Publisher: ASTM International
ISBN: 0803124139
Category : Aluminum alloys
Languages : en
Pages : 231
Book Description
Publisher: ASTM International
ISBN: 0803124139
Category : Aluminum alloys
Languages : en
Pages : 231
Book Description
Time-Dependent Fracture Mechanics
Author: Dominique P. Miannay
Publisher: Springer Science & Business Media
ISBN: 1461301556
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
Intended for engineers, researchers, and graduate students dealing with materials science, structural design, and nondestructive testing and evaluation, this book represents a continuation of the author's "Fracture Mechanics" (1997). It will appeal to a variety of audiences: The discussion of design codes and procedures will be of use to practicing engineers, particularly in the nuclear, aerospace, and pipeline industries; the extensive bibliography and discussion of recent results will make it a useful reference for academic researchers; and graduate students will find the clear explanations and worked examples useful for learning the field. The book begins with a general treatment of fracture mechanics in terms of material properties and loading and provides up-to-date reviews of the ductile-brittle transition in steels and of methods for analyzing the risk of fracture. It then discusses the dynamics of fracture and creep in homogeneous and isotropic media, including discussions of high-loading-rate characteristics, the behavior of stationary cracks in elastic media under stress, and the propagation of cracks in elastic media. This is followed by an analysis of creep and crack initiation and propagation, describing, for example, the morphology and incubation times of crack initiation and growth and the effects of high temperatures. The book concludes with treatments of cycling deformation and fatigue, creep-fatigue fractures, and crack initiation and propagation. Problems at the end of each chapter serve to reinforce and test the student's knowledge and to extend some of the discussions in the text. Solutions to half of the problems are provided.
Publisher: Springer Science & Business Media
ISBN: 1461301556
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
Intended for engineers, researchers, and graduate students dealing with materials science, structural design, and nondestructive testing and evaluation, this book represents a continuation of the author's "Fracture Mechanics" (1997). It will appeal to a variety of audiences: The discussion of design codes and procedures will be of use to practicing engineers, particularly in the nuclear, aerospace, and pipeline industries; the extensive bibliography and discussion of recent results will make it a useful reference for academic researchers; and graduate students will find the clear explanations and worked examples useful for learning the field. The book begins with a general treatment of fracture mechanics in terms of material properties and loading and provides up-to-date reviews of the ductile-brittle transition in steels and of methods for analyzing the risk of fracture. It then discusses the dynamics of fracture and creep in homogeneous and isotropic media, including discussions of high-loading-rate characteristics, the behavior of stationary cracks in elastic media under stress, and the propagation of cracks in elastic media. This is followed by an analysis of creep and crack initiation and propagation, describing, for example, the morphology and incubation times of crack initiation and growth and the effects of high temperatures. The book concludes with treatments of cycling deformation and fatigue, creep-fatigue fractures, and crack initiation and propagation. Problems at the end of each chapter serve to reinforce and test the student's knowledge and to extend some of the discussions in the text. Solutions to half of the problems are provided.
Nonlinear Fracture Mechanics: Time-dependent fracture
Author: Ashok Saxena
Publisher: ASTM International
ISBN: 0803111746
Category : Creep
Languages : en
Pages : 480
Book Description
Publisher: ASTM International
ISBN: 0803111746
Category : Creep
Languages : en
Pages : 480
Book Description
Time-Dependent Fracture
Author: A.S. Krausz
Publisher: Springer Science & Business Media
ISBN: 9400950853
Category : Science
Languages : en
Pages : 303
Book Description
The understanding of time dependent crack propagation processes occupies a central place in the study of fracture. It also encompasses a wide range of conditions: failure under sustained loading in a corrosive environment, fracture under cyclic loading in non-degrading and in corrosive environment, and rupture at high temperature. This list covers probably 90% of the failures that occur in engineering practice. The process of time dependent fracture is controlled by the physics of atomic interaction changes; it is strongly influenced by the micro structure; and affected by the interaction of the material with the mechanical (load, displacement), the thermal (temperature), and the chemical or radiation environment. To be able to control crack propagation the development of testing methods and the understanding of the industrial environment is essential. The conference was organized in this context. A call was issued for contributions to the following topics. THERMAL ACTIVATION. Theoretical papers dealing with the modification of fracture mechanics to accommodate thermally activated processes. TIME DEPENDENT MICRO-PROCESSES. Presentations covering both the theoretical and observational aspects of creep and fatigue damage in materials whose microstructures may exert a significant influence on crack growth. INDUSTRIAL APPLICATIONS. Submissions describing the practical application of fracture mechanics and damage tolerance analysis to the determination of useful operating lives. x ENVIRONMENTAL EFFECTS. Papers dealing with engineering materials and/or components exposed to aggressive environments, with and without temperature effects. The response was gratifying. Leading experts responded; the organizers of the conference are grateful for the large number of excellent contributions.
Publisher: Springer Science & Business Media
ISBN: 9400950853
Category : Science
Languages : en
Pages : 303
Book Description
The understanding of time dependent crack propagation processes occupies a central place in the study of fracture. It also encompasses a wide range of conditions: failure under sustained loading in a corrosive environment, fracture under cyclic loading in non-degrading and in corrosive environment, and rupture at high temperature. This list covers probably 90% of the failures that occur in engineering practice. The process of time dependent fracture is controlled by the physics of atomic interaction changes; it is strongly influenced by the micro structure; and affected by the interaction of the material with the mechanical (load, displacement), the thermal (temperature), and the chemical or radiation environment. To be able to control crack propagation the development of testing methods and the understanding of the industrial environment is essential. The conference was organized in this context. A call was issued for contributions to the following topics. THERMAL ACTIVATION. Theoretical papers dealing with the modification of fracture mechanics to accommodate thermally activated processes. TIME DEPENDENT MICRO-PROCESSES. Presentations covering both the theoretical and observational aspects of creep and fatigue damage in materials whose microstructures may exert a significant influence on crack growth. INDUSTRIAL APPLICATIONS. Submissions describing the practical application of fracture mechanics and damage tolerance analysis to the determination of useful operating lives. x ENVIRONMENTAL EFFECTS. Papers dealing with engineering materials and/or components exposed to aggressive environments, with and without temperature effects. The response was gratifying. Leading experts responded; the organizers of the conference are grateful for the large number of excellent contributions.
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 420
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 420
Book Description
Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures
Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811532745
Category : Technology & Engineering
Languages : en
Pages : 373
Book Description
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.
Publisher: Springer Nature
ISBN: 9811532745
Category : Technology & Engineering
Languages : en
Pages : 373
Book Description
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.
Mechanics of Crack Growth
Author: J. R. Rice
Publisher: ASTM International
ISBN: 9780803105096
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Publisher: ASTM International
ISBN: 9780803105096
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1572
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1572
Book Description