Author: Phillip James Tabb
Publisher: Taylor & Francis
ISBN: 1000912469
Category : Architecture
Languages : en
Pages : 285
Book Description
What makes the places we inhabit extraordinary? Why are some urban spaces more vital and restorative? Wonderful landscapes, inspiring works of architecture and urban design, and the numinous experiences that accompany them have been an integral dimension of our culture. Up-lifting spaces, dramatic use of natural light, harmonic proportional geometry, magical landscapes, historic sites and vital city centers create special, even sacred moments in architecture and planning. This quality of experience is often seen as an aesthetic purpose intended to inspire, ennoble, ensoul and spiritually renew. Architecture and urban spaces, functioning in this way, are considered to be thin places.
Thin Places
Author: Kay Chronister
Publisher:
ISBN: 9781988964188
Category :
Languages : en
Pages : 206
Book Description
Kay Chronister's remarkable debut collection of modern horror tales, Thin Places, echoes with the ghosts of Shirley Jackson and Charlotte Perkins Gilman, while forging its own unique gothic sensibility. Here there be monsters! And witches! These are tales of monstrous mothers and dark desires. Love, grief, death; and the exquisite pain and joy of life. With transcendent prose, Chronister chronicles the lives of powerful women and children; wicked witches and demons. These are the traumatic ghosts we all carry, and Chronister knows what it means to be human and humane. Powerful and hypnotic, these are tales you won't forget, from a vibrant new voice.
Publisher:
ISBN: 9781988964188
Category :
Languages : en
Pages : 206
Book Description
Kay Chronister's remarkable debut collection of modern horror tales, Thin Places, echoes with the ghosts of Shirley Jackson and Charlotte Perkins Gilman, while forging its own unique gothic sensibility. Here there be monsters! And witches! These are tales of monstrous mothers and dark desires. Love, grief, death; and the exquisite pain and joy of life. With transcendent prose, Chronister chronicles the lives of powerful women and children; wicked witches and demons. These are the traumatic ghosts we all carry, and Chronister knows what it means to be human and humane. Powerful and hypnotic, these are tales you won't forget, from a vibrant new voice.
The Thin Place
Author: Lucas Hnath
Publisher: Samuel French, Incorporated
ISBN: 9780573709036
Category :
Languages : en
Pages : 86
Book Description
The thin place is a place where the line between this world and another one is very thin; where the living and the dead can reconnect. Ever since she was a little girl, Hilda tried to make contact with that "other place" by listening very carefully, not with her ears but with the space just behind and a little above her eyes. She was never all that sure that the things she could hear were real, until she met Linda, a professional psychic, who can talk to the dead. That's what Hilda wants to do, and so she befriends Linda. But as their friendship deepens, Linda unveils some uncomfortable truths. The Thin Place is a horror story about what's really going on in the space just behind and a little above your eyes.
Publisher: Samuel French, Incorporated
ISBN: 9780573709036
Category :
Languages : en
Pages : 86
Book Description
The thin place is a place where the line between this world and another one is very thin; where the living and the dead can reconnect. Ever since she was a little girl, Hilda tried to make contact with that "other place" by listening very carefully, not with her ears but with the space just behind and a little above her eyes. She was never all that sure that the things she could hear were real, until she met Linda, a professional psychic, who can talk to the dead. That's what Hilda wants to do, and so she befriends Linda. But as their friendship deepens, Linda unveils some uncomfortable truths. The Thin Place is a horror story about what's really going on in the space just behind and a little above your eyes.
Thin Place Design
Author: Phillip James Tabb
Publisher: Taylor & Francis
ISBN: 1000912469
Category : Architecture
Languages : en
Pages : 285
Book Description
What makes the places we inhabit extraordinary? Why are some urban spaces more vital and restorative? Wonderful landscapes, inspiring works of architecture and urban design, and the numinous experiences that accompany them have been an integral dimension of our culture. Up-lifting spaces, dramatic use of natural light, harmonic proportional geometry, magical landscapes, historic sites and vital city centers create special, even sacred moments in architecture and planning. This quality of experience is often seen as an aesthetic purpose intended to inspire, ennoble, ensoul and spiritually renew. Architecture and urban spaces, functioning in this way, are considered to be thin places.
Publisher: Taylor & Francis
ISBN: 1000912469
Category : Architecture
Languages : en
Pages : 285
Book Description
What makes the places we inhabit extraordinary? Why are some urban spaces more vital and restorative? Wonderful landscapes, inspiring works of architecture and urban design, and the numinous experiences that accompany them have been an integral dimension of our culture. Up-lifting spaces, dramatic use of natural light, harmonic proportional geometry, magical landscapes, historic sites and vital city centers create special, even sacred moments in architecture and planning. This quality of experience is often seen as an aesthetic purpose intended to inspire, ennoble, ensoul and spiritually renew. Architecture and urban spaces, functioning in this way, are considered to be thin places.
Research Design for Combed Yarn Quality
Author: Dr. Sukhvir Singh
Publisher: LWRN Studio
ISBN: 8196362218
Category : Technology & Engineering
Languages : en
Pages : 146
Book Description
The aim of this study is to investigate the effects of finisher drawframe storage variables such as can-spring stiffness, sliver deposition rate and sliver coils position on the quality characteristics of the combed ring-spun yarn. The research design also includes the effect of sliver storage time on the quality of stored sliver and subsequently on roving and yarn produced on speedframe and ringframe respectively. The critical role of storage can-spring parameters on combed sliver, roving and yarn quality has been frequently discussed in spinning preparatory literature. However, a clear understanding of the nature of relationships, as mentioned above, is not yet well established by the previous works. So, there is a need to study the underlying factors at a deeper level that may provide further insight into ways to control ring yarn quality. Therefore, the present investigations were carried out to observe the effects of uncommon process parameters namely can-spring stiffness, delivery rate and sliver coils position at post comber drawing stage on sliver, roving and yarn quality when slivers were allowed to feed without any storage time and after 8 hours storage time. The research plan was developed by implementing a three factor three level Box-Behnken design of experiment. The effects of aforementioned variables were studied on combed yarn unevenness properties (U%, CVm % and Imperfections), tensile properties (yarn tenacity and breaking elongation) and S3 hairiness. The results showed that the effects of can-spring stiffness and sliver coils position are significant on yarn evenness, CVm%, imperfections, tenacity and S3 hairiness. However, the combed yarn quality parameters did not show any significant relationships with the post combing drawing delivery rate. It was observed that the combed yarn produced from bottom position sliver coils using older can-spring showed less even yarn with improved imperfection, having less strength and more hairiness. The combed yarn quality further deteriorates on allowing 8 hours of sliver storage time. It was found that the bottom sliver coils experience the highest compressive forces compared to other sliver coils position and adjacent sliver coils stickiness was observed which result in sliver stretching and failure at the time of processing on speedframe. Also, older can- spring of reduced spring stiffness result in buckling which leads to stored sliver contact with rough sidewalls caused weak & hairy sliver. The combed yarn samples produced from such storage cans leads to uneven yarn with more imperfections, weaker and hairy yarn structure. The contribution of sliver coils position was found highest followed by can-spring stiffness in deciding combed yarn quality parameters in the current study. However, the effect of finisher drawframe delivery speed on yarn quality parameters was found minimal. Apart from this, an attempt has been made to understand the effect of dynamics of the can-spring mechanism on combed sliver handling at the time of sliver deposition at drawframe through bond graph modeling approach. The behaviour of the can-spring used for combed sliver storage was found linear as expected. It was observed that bond graph modeling of can-spring mechanism provides us information on more states in a systematic and algorithmic manner compared to any other technique. Linear momentum, linear displacement of top plate, force experienced by the combed sliver and load versus displacement response of the mechanism was also studied. However, the more rigorous study is required to study the accurate dynamics of such precise systems because the force and the stresses experienced by the combed sliver are too low due to very low inter-fiber cohesion.
Publisher: LWRN Studio
ISBN: 8196362218
Category : Technology & Engineering
Languages : en
Pages : 146
Book Description
The aim of this study is to investigate the effects of finisher drawframe storage variables such as can-spring stiffness, sliver deposition rate and sliver coils position on the quality characteristics of the combed ring-spun yarn. The research design also includes the effect of sliver storage time on the quality of stored sliver and subsequently on roving and yarn produced on speedframe and ringframe respectively. The critical role of storage can-spring parameters on combed sliver, roving and yarn quality has been frequently discussed in spinning preparatory literature. However, a clear understanding of the nature of relationships, as mentioned above, is not yet well established by the previous works. So, there is a need to study the underlying factors at a deeper level that may provide further insight into ways to control ring yarn quality. Therefore, the present investigations were carried out to observe the effects of uncommon process parameters namely can-spring stiffness, delivery rate and sliver coils position at post comber drawing stage on sliver, roving and yarn quality when slivers were allowed to feed without any storage time and after 8 hours storage time. The research plan was developed by implementing a three factor three level Box-Behnken design of experiment. The effects of aforementioned variables were studied on combed yarn unevenness properties (U%, CVm % and Imperfections), tensile properties (yarn tenacity and breaking elongation) and S3 hairiness. The results showed that the effects of can-spring stiffness and sliver coils position are significant on yarn evenness, CVm%, imperfections, tenacity and S3 hairiness. However, the combed yarn quality parameters did not show any significant relationships with the post combing drawing delivery rate. It was observed that the combed yarn produced from bottom position sliver coils using older can-spring showed less even yarn with improved imperfection, having less strength and more hairiness. The combed yarn quality further deteriorates on allowing 8 hours of sliver storage time. It was found that the bottom sliver coils experience the highest compressive forces compared to other sliver coils position and adjacent sliver coils stickiness was observed which result in sliver stretching and failure at the time of processing on speedframe. Also, older can- spring of reduced spring stiffness result in buckling which leads to stored sliver contact with rough sidewalls caused weak & hairy sliver. The combed yarn samples produced from such storage cans leads to uneven yarn with more imperfections, weaker and hairy yarn structure. The contribution of sliver coils position was found highest followed by can-spring stiffness in deciding combed yarn quality parameters in the current study. However, the effect of finisher drawframe delivery speed on yarn quality parameters was found minimal. Apart from this, an attempt has been made to understand the effect of dynamics of the can-spring mechanism on combed sliver handling at the time of sliver deposition at drawframe through bond graph modeling approach. The behaviour of the can-spring used for combed sliver storage was found linear as expected. It was observed that bond graph modeling of can-spring mechanism provides us information on more states in a systematic and algorithmic manner compared to any other technique. Linear momentum, linear displacement of top plate, force experienced by the combed sliver and load versus displacement response of the mechanism was also studied. However, the more rigorous study is required to study the accurate dynamics of such precise systems because the force and the stresses experienced by the combed sliver are too low due to very low inter-fiber cohesion.
Wellness Architecture and Urban Design
Author: Phillip James Tabb
Publisher: Taylor & Francis
ISBN: 1040106838
Category : Architecture
Languages : en
Pages : 249
Book Description
Wellness is a contemporary concept with deep ancient roots promoting preventative and holistic activities, lifestyle choices, and salient architecture and urban design practices. Wellness Architecture and Urban Design presents definitions, an analysis of the wellness literature, and a brief history of the wellness movement. Specific planning and design strategies are presented citing examples worldwide and emphasizing the importance of wellness considerations at all scales of the built environment from rooms to cities. Both case studies offer fully integrated and comprehensive wellness design approaches creating resilient and life-enhancing wellness through each of the architecture and urban design scales. The book will be of interest to practitioners and students working in urban design, landscape architecture, architecture, planning, and affiliated fields.
Publisher: Taylor & Francis
ISBN: 1040106838
Category : Architecture
Languages : en
Pages : 249
Book Description
Wellness is a contemporary concept with deep ancient roots promoting preventative and holistic activities, lifestyle choices, and salient architecture and urban design practices. Wellness Architecture and Urban Design presents definitions, an analysis of the wellness literature, and a brief history of the wellness movement. Specific planning and design strategies are presented citing examples worldwide and emphasizing the importance of wellness considerations at all scales of the built environment from rooms to cities. Both case studies offer fully integrated and comprehensive wellness design approaches creating resilient and life-enhancing wellness through each of the architecture and urban design scales. The book will be of interest to practitioners and students working in urban design, landscape architecture, architecture, planning, and affiliated fields.
Design in Textile Fabrics
Author: Thomas R. Ashenhurst
Publisher:
ISBN:
Category : Decoration and ornament
Languages : en
Pages : 288
Book Description
Publisher:
ISBN:
Category : Decoration and ornament
Languages : en
Pages : 288
Book Description
Design in Textile Fabrics
Author: Thomas R. Ashenhurst
Publisher: BoD – Books on Demand
ISBN: 3385310393
Category : Fiction
Languages : en
Pages : 270
Book Description
Reprint of the original, first published in 1883.
Publisher: BoD – Books on Demand
ISBN: 3385310393
Category : Fiction
Languages : en
Pages : 270
Book Description
Reprint of the original, first published in 1883.
Elemental Architecture
Author: Phillip James Tabb
Publisher: Routledge
ISBN: 1351200410
Category : Architecture
Languages : en
Pages : 233
Book Description
Elemental Architecture presents a new and refreshing approach to sustainable architectural practice. Going beyond the standard performance-based and quantitative sustainable measures, it incorporates a broader framework of considerations, including the more poetic and noetic possibilities of environmental design. The book is structured around the ancient Greek and medieval alchemists’ system of the Five Temperaments: fire, earth, air, water, and ether. Phillip James Tabb examines how these elements produce both positive and negative environmental forces which have an impact on architectural design – from drinking water and fresh air to torrential floods and tornados. He shows how responding to or enhancing these forces can help us to create a more sustainable, healthy, and purposeful architecture. To illustrate this, each chapter draws on seminal contemporary works of architecture, from Peter Zumthor’s Bruder-Klaus Field Chapel to Frank Lloyd Wright’s masterpiece at Fallingwater. These examples are accompanied by over a hundred high-quality illustrations. Expanding the discussion of sustainability to include phenomenological as well as qualitative considerations, Elemental Architecture is ideal for students and researchers with an interest in sustainable architecture and architectural theory.
Publisher: Routledge
ISBN: 1351200410
Category : Architecture
Languages : en
Pages : 233
Book Description
Elemental Architecture presents a new and refreshing approach to sustainable architectural practice. Going beyond the standard performance-based and quantitative sustainable measures, it incorporates a broader framework of considerations, including the more poetic and noetic possibilities of environmental design. The book is structured around the ancient Greek and medieval alchemists’ system of the Five Temperaments: fire, earth, air, water, and ether. Phillip James Tabb examines how these elements produce both positive and negative environmental forces which have an impact on architectural design – from drinking water and fresh air to torrential floods and tornados. He shows how responding to or enhancing these forces can help us to create a more sustainable, healthy, and purposeful architecture. To illustrate this, each chapter draws on seminal contemporary works of architecture, from Peter Zumthor’s Bruder-Klaus Field Chapel to Frank Lloyd Wright’s masterpiece at Fallingwater. These examples are accompanied by over a hundred high-quality illustrations. Expanding the discussion of sustainability to include phenomenological as well as qualitative considerations, Elemental Architecture is ideal for students and researchers with an interest in sustainable architecture and architectural theory.
3D Printing & Design
Author: Dr. Sabrie Soloman
Publisher: KHANNA PUBLISHING HOUSE
ISBN: 938617376X
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
The book provides a detailed guide and optimum implementations to each of the stated 3D printing technology, the basic understanding of its operation, and the similarity as well as the dissimilarity functions of each printer. School Students, University undergraduates, and post graduate student will find the book of immense value to equip them not only with the fundamental in design and implementation but also will encourage them to acquire a system and practice creating their own innovative samples. Furthermore, professionals and educators will be well prepared to use the knowledge and the expertise to practice and advance the technology for the ultimate good of their respective organizations.
Publisher: KHANNA PUBLISHING HOUSE
ISBN: 938617376X
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
The book provides a detailed guide and optimum implementations to each of the stated 3D printing technology, the basic understanding of its operation, and the similarity as well as the dissimilarity functions of each printer. School Students, University undergraduates, and post graduate student will find the book of immense value to equip them not only with the fundamental in design and implementation but also will encourage them to acquire a system and practice creating their own innovative samples. Furthermore, professionals and educators will be well prepared to use the knowledge and the expertise to practice and advance the technology for the ultimate good of their respective organizations.
Additive Manufacturing -3D Printing & Design
Author: Dr. Sabrie Soloman
Publisher: Dr. Sabrie Soloman
ISBN:
Category : Business & Economics
Languages : en
Pages : 428
Book Description
Additive Manufacturing 3D Printing & Design The 4th Revolution Not ever previously consumer has had a technology where we so easily interpret the concepts into a touchable object with little concern to the machinery or talents available. If “seeing is believing!-” 3D printing technology is the perfect object image to see, touch, and feel! It is the wings to lift the well sought product, after laboring and toiling in several design iterations to bring the novel product to be a successful implementation. Now it is promising to become familiar with the product prototype and physically test it to find the flaws in the design. If a flaw is detected, the designer can easily modify the CAD file and print out a new unit. On Demand Custom Part Additive manufacturing has become a mainstream manufacturing process. It builds up parts by adding materials one layer at a time based on a computerized 3D solid model. It does not require the use of fixtures, cutting tools, coolants, and other auxiliary resources. It allows design optimization and the producing of customized parts on-demand. Its advantages over conventional manufacturing have captivated the imagination of the public, reflected in recent corporate implementations and in many academic publications that call additive manufacturing the “fourth industrial revolution.” Digital Model Layer by Layer 3D additive manufacturing is a process tailored for making three-dimensional objects of varieties of different shapes created from digital models. The objects are produced using an additive process, where successive layers of materials are deposited down in different shapes. The 3D Additive Manufacturing is considered diverse from traditional machining techniques, which depends primarily on the removal of material by cutting or drilling. The removal of material is referred to as a “subtractive process.” In a fast-paced, pressure-filled business atmosphere, it is clear that decreasing delivery by days is exceptionally valuable. Digital Manufacturing 3D printing - additive manufacturing, produces 3D solid items from a digital computer file. The printing occurs in an additive process, where a solid object is generated through the consecutive layering of material. There are an extensive variety of materials to select from countless lists of polymers and metals. The process begins with the generation of a 3D digital file such as CAD file. The 3D digital file is then directed to a 3D printer for printing using a simple print command. Freed of the constraints of traditional factories, additive manufacturing allows designers to produce parts that were previously considered far too complex to make economically. Engineers and Biologists are finding practical applications to use 3D additive manufacturing. It permits novel designs to become matchless rare-products that were not likely with preceding manufacturing methods. It is poised to transform medicine and biology with bio-manufacturing. This technology has the possibility to upsurge the well-being of a nation’s citizens. Additive manufacturing may progress the worldwide resources and energy effectiveness in ground, sea and air. This 3D Printing & Design book will enable you to develop and 3D print your own unique object using myriads of worldwide materials. Galilee Galileo & Isaac Newton Galileo Galilei and Isaac Newton have changed our understanding of not only our own solar system, but also the whole universe through the invention of their telescope. The telescope steered a novel and captivating scientific discipline of “astronomy” —observing and studying the planets, stars, and other objects in the universe. The Nebula, for example, could not be observed prior to the invention of the telescope. No one could have estimated how many planets were in our solar system. Thanks to the technology of the telescope, the knowledge of universe was revealed. Thanks to a simple piece of glass made of silica, and to a simple lens made of glass. Similarly, 3D printing technology is a simple approach to open a flood gate to our Fourth Industrial Revolution. One-off Prototype One-off prototypes can be hideously expensive to produce, but a 3D printer can bring down the cost by a sizable margin. Many consumers goods, mechanical parts, aerospace, automobiles, robots, shoes, fashions, architects' models, dentures, hearing aids, cell biology, now appear in a 3D-printed form for appraisal by engineers, stylists, biologist, and clients before obtaining the final approval. Any changes can be swiftly reprinted in a few hours or overnight, whereas waiting for a new prototype to emerge from a machine shop could take weeks, and sometimes months. Some designers are already printing ready-to-wear shoes, dresses, and prosthetics, from metals, plastic and nylon materials. 3D printing’s utmost advantage is making discrete parts rapidly, autonomous of design complications. That speed delivers rapid reaction on the first prototype, and the capability to modify the design and speedily re-manufacture the part. As an alternative of waiting days or weeks for a CNC-machined prototype, a 3D printer can manufacture the part overnight. Development Cycle The 3D printer provides the additional advantage of removing many overhead manufacturing costs and time-delay by 3D printing parts that withstand a machine shop environment. Several tooling, fixtures, and work-holding jaws may be easily developed and 3D printed without extensive lead time and overhead cost. Its speed and quality shorten the product development cycle, permitting manufacturing aesthetically appealing, and high-performance parts in less than a day. Many instances testify that 3D printers offer substantial flexibility to yield parts with the adequate tensile strength and quality, desired to prosper the technology at a reasonable speed and cost. The rewards of applying 3D printing are substantial, as 3D printing permits product development teams to effortlessly, rapidly, and cost effectively yield models, prototypes, and patterns. Parts can be manufactured in hours or days rather than weeks. Nano-bots 3D additive manufacturing may be the only known method for constructing nanobots, which will overcome the speed disadvantage of 3D additive printing, thereby enabling the technology to be widely deployed in every manufacturing aspect. If millions of nanobots worked together, they might be able to do amazing manufacturing takes. Microscopic Surgery Scientists and researchers constructed teams of nanobots able to perform microscopic surgery inside a patient’s body. Some groups of nanobots have been programmed to build objects by arranging atoms precisely so there would be no waste. Other nanobots might even be designed to build more nanobots to replace ones that wear out! Compared to other areas of science like manufacturing and biology, nanotechnology is a very new area of 3D printing research. Working with microns and nanometers is still a very slow and difficult task. Carbon Fiber Also, material scientists and metallurgists are constantly providing engineers, and manufacturers with new and superior materials to make parts in the most economical and effective means. Carbon-fiber composites, for instance, are replacing steel and aluminum in products ranging from simple mountain bikes to sophisticated airliners. Sometimes the materials are farmed, cultivated and may be grown from biological substances and from micro-organisms that have been genetically engineered for the task of fabricating useful parts. Facing the benefits of the current evolution of 3D printing technology, companies from all parts in the supply chain are experiencing the opportunities and threatens it may bring. First, to traditional logistic companies, 3D printing is causing a decline in the cargo industry, reducing the demand for long-distance transportation such as air, sea and rail freight industries. The logistic companies which did not realize the current evolution may not adapt rapidly enough to the new situation. As every coin has two sides, with 3D Printing, logistics companies could also become able to act as the manufacturers. The ability to produce highly complex designs with powerful computer software and turn them into real objects with 3D printing is creating a new design language. 3D-printed items often have an organic, natural look. “Nature has come up with some very efficient designs, Figure 1.3. Often it is prudent to mimic them,” particularly in medical devices. By incorporating the fine, lattice-like internal structure of natural bone into a metal implant, for instance, the implant can be made lighter than a machined one without any loss of strength. It can integrate more easily with the patient's own bones and be grafted precisely to fit the intended patient. Surgeons printed a new titanium jaw for a woman suffering from a chronic bone infection. 3D additive manufacturing promises sizable savings in material costs. In the aerospace industry, metal parts are often machined from a solid billet of costly high-grade titanium. This constitutes 90% of material that is wasted. However, titanium powder can be used to print parts such as a bracket for an aircraft door or part of a satellite. These can be as strong as a machined part, but use only 10% of the raw material. A Boeing F-18 fighter contains a number of printed parts such as air ducts, reducing part weight by at least 30%. Remote Manufacturing 3D Printers Replicator can scan an object in one place while simultaneously communicating to another machine, locally or globally, developed to build a replica object. For example, urgently needed spares could be produced in remote places without having to ship the original object. Even parts that are no longer available could be replicated by scanning a broken item, repairing it virtually, and then printing a new one. It is likely digital libraries will appear online for parts and products that are no longer available. Just as the emergence of e-books means books may never go out of print, components could always remain available. Service mechanics could have portable 3D printers in their vans and hardware stores could offer part-printing services. DIY Market Some entrepreneurs already have desktop 3D printers at home. Industrial desktop 3D printing machines are creating an entirely new market. This market is made up of hobbyists, do-it-yourself enthusiasts, tinkerers, inventors, researchers, and entrepreneurs. Some 3D-printing systems can be built from kits and use open-source software. Machinists may be replaced someday by software technicians who service production machines. 3D printers would be invaluable in remote areas. Rather than waiting days for the correct tool to be delivered, you could instantly print the tool on the job. Printing Materials However, each method has its own benefits and downsides. Some 3D printer manufacturers consequently offer a choice between powder and polymer for the material from which the object is built. Some manufacturer use standard, off-the-shelf business paper as the build material to produce a durable prototype. Speed, cost of the 3D printer, cost of the printed prototype, and the cost of choice materials and color capabilities are the main considerations in selecting a 3D printing machine. SLA – DLP - FDM – SLS - SLM & EBM The expansive world of 3D printing machines has become a confusing place for beginners and professionals alike. The most well-known 3D printing techniques and types of 3D printing machines are stated below. The 3D printing technology is categorized according to the type of technology utilized. The categories are stated as follows: Stereolithography(SLA) Digital Light Processing(DLP) Fused deposition modeling (FDM) Selective Laser Sintering (SLS) Selective laser melting (SLM) Electronic Beam Melting (EBM) Laminated object manufacturing (LOM) Also, the book provides a detailed guide and optimum implementations to each of the stated 3D printing technology, the basic understanding of its operation, and the similarity as well as the dissimilarity functions of each printer. School Students, University undergraduates, and post graduate students will find the book of immense value to equip them not only with the fundamental in design and implementation but also will encourage them to acquire a system and practice creating their own innovative samples. Furthermore, professionals and educators will be well prepared to use the knowledge and the expertise to practice and advance the technology for the ultimate good of their respective organizations. Global Equal Standing Manufacturers large and small play a significant part in the any country’s economy. The U.S. economy; rendering to the United States Census Bureau, manufacturers are the nation’s fourth-largest employer, and ship several trillions of dollars in goods per annum. It may be a large automotive enterprise manufacturing vehicles or an institution with less than 50 employees. Manufacturers are vital to the country’s global success. However, many societies have misunderstandings about the manufacturing jobs are undesirable jobs and offers low-paying compensations. Other countries may be discouraged to compete against USA. Additive Manufacturing Technology – 3D Printing would level the manufacturing plane field, enabling all countries to globally stand on equal footing. Dr. Sabrie Soloman, Chairman & CEO 3D Printing & Design Not ever previously consumer has had a technology where we so easily interpret the concepts into a touchable object with little concern to the machinery or talents available. 3D Printing Technology builds up parts by adding materials one layer at a time based on a computerized 3D solid model. It allows design optimization and the producing of customized parts on-demand. Its advantages over conventional manufacturing have captivated the imagination of the public, reflected in recent corporate implementations and in many academic publications that call additive manufacturing the “Fourth Industrial Revolution.” 3D Printing produces 3D solid items from a digital computer file. The printing occurs in an additive process, where a solid object is generated through the consecutive layering of material. The process begins with the generation of a 3D digital file such as CAD file. The 3D digital file is then directed to a 3D Printer for printing using a simple print command. Freed of the constraints of traditional factories, additive manufacturing allows designers to produce parts that were previously considered far too complex to make economically. Engineers and Biologists are finding practical applications to use 3D additive manufacturing. It permits novel designs to become matchless rare-products that were not likely with preceding manufacturing methods. 3D Printing Technology is poised to transform medicine and biology with bio-manufacturing, and traditional manufacturing into 3D Printing. This technology has the possibility to upsurge the well-being of a nation’s citizens. Additive manufacturing may progress the worldwide resources and energy effectiveness in “Ground, Sea and Air.” This 3D Printing & Design book will enable you to develop and 3D Print your own unique object using myriads of available worldwide materials. One-off prototypes can be hideously expensive to produce, but a 3D Printer can bring down the cost by a sizable margin. Many consumers goods, mechanical parts, aerospace, automobiles, robots, shoes, fashions, architects' models, dentures, hearing aids, cell biology, now appear in a 3D-printed form for appraisal by engineers, stylists, biologist, and clients before obtaining the final approval. The 3D Printing Technology provides the additional advantage of removing many overhead manufacturing costs and time-delay. The rewards are substantial, as it permits product development teams effortlessly, rapidly and cost effectively yielding models, prototypes, and patterns to be manufactured in hours or days rather than weeks, or months.
Publisher: Dr. Sabrie Soloman
ISBN:
Category : Business & Economics
Languages : en
Pages : 428
Book Description
Additive Manufacturing 3D Printing & Design The 4th Revolution Not ever previously consumer has had a technology where we so easily interpret the concepts into a touchable object with little concern to the machinery or talents available. If “seeing is believing!-” 3D printing technology is the perfect object image to see, touch, and feel! It is the wings to lift the well sought product, after laboring and toiling in several design iterations to bring the novel product to be a successful implementation. Now it is promising to become familiar with the product prototype and physically test it to find the flaws in the design. If a flaw is detected, the designer can easily modify the CAD file and print out a new unit. On Demand Custom Part Additive manufacturing has become a mainstream manufacturing process. It builds up parts by adding materials one layer at a time based on a computerized 3D solid model. It does not require the use of fixtures, cutting tools, coolants, and other auxiliary resources. It allows design optimization and the producing of customized parts on-demand. Its advantages over conventional manufacturing have captivated the imagination of the public, reflected in recent corporate implementations and in many academic publications that call additive manufacturing the “fourth industrial revolution.” Digital Model Layer by Layer 3D additive manufacturing is a process tailored for making three-dimensional objects of varieties of different shapes created from digital models. The objects are produced using an additive process, where successive layers of materials are deposited down in different shapes. The 3D Additive Manufacturing is considered diverse from traditional machining techniques, which depends primarily on the removal of material by cutting or drilling. The removal of material is referred to as a “subtractive process.” In a fast-paced, pressure-filled business atmosphere, it is clear that decreasing delivery by days is exceptionally valuable. Digital Manufacturing 3D printing - additive manufacturing, produces 3D solid items from a digital computer file. The printing occurs in an additive process, where a solid object is generated through the consecutive layering of material. There are an extensive variety of materials to select from countless lists of polymers and metals. The process begins with the generation of a 3D digital file such as CAD file. The 3D digital file is then directed to a 3D printer for printing using a simple print command. Freed of the constraints of traditional factories, additive manufacturing allows designers to produce parts that were previously considered far too complex to make economically. Engineers and Biologists are finding practical applications to use 3D additive manufacturing. It permits novel designs to become matchless rare-products that were not likely with preceding manufacturing methods. It is poised to transform medicine and biology with bio-manufacturing. This technology has the possibility to upsurge the well-being of a nation’s citizens. Additive manufacturing may progress the worldwide resources and energy effectiveness in ground, sea and air. This 3D Printing & Design book will enable you to develop and 3D print your own unique object using myriads of worldwide materials. Galilee Galileo & Isaac Newton Galileo Galilei and Isaac Newton have changed our understanding of not only our own solar system, but also the whole universe through the invention of their telescope. The telescope steered a novel and captivating scientific discipline of “astronomy” —observing and studying the planets, stars, and other objects in the universe. The Nebula, for example, could not be observed prior to the invention of the telescope. No one could have estimated how many planets were in our solar system. Thanks to the technology of the telescope, the knowledge of universe was revealed. Thanks to a simple piece of glass made of silica, and to a simple lens made of glass. Similarly, 3D printing technology is a simple approach to open a flood gate to our Fourth Industrial Revolution. One-off Prototype One-off prototypes can be hideously expensive to produce, but a 3D printer can bring down the cost by a sizable margin. Many consumers goods, mechanical parts, aerospace, automobiles, robots, shoes, fashions, architects' models, dentures, hearing aids, cell biology, now appear in a 3D-printed form for appraisal by engineers, stylists, biologist, and clients before obtaining the final approval. Any changes can be swiftly reprinted in a few hours or overnight, whereas waiting for a new prototype to emerge from a machine shop could take weeks, and sometimes months. Some designers are already printing ready-to-wear shoes, dresses, and prosthetics, from metals, plastic and nylon materials. 3D printing’s utmost advantage is making discrete parts rapidly, autonomous of design complications. That speed delivers rapid reaction on the first prototype, and the capability to modify the design and speedily re-manufacture the part. As an alternative of waiting days or weeks for a CNC-machined prototype, a 3D printer can manufacture the part overnight. Development Cycle The 3D printer provides the additional advantage of removing many overhead manufacturing costs and time-delay by 3D printing parts that withstand a machine shop environment. Several tooling, fixtures, and work-holding jaws may be easily developed and 3D printed without extensive lead time and overhead cost. Its speed and quality shorten the product development cycle, permitting manufacturing aesthetically appealing, and high-performance parts in less than a day. Many instances testify that 3D printers offer substantial flexibility to yield parts with the adequate tensile strength and quality, desired to prosper the technology at a reasonable speed and cost. The rewards of applying 3D printing are substantial, as 3D printing permits product development teams to effortlessly, rapidly, and cost effectively yield models, prototypes, and patterns. Parts can be manufactured in hours or days rather than weeks. Nano-bots 3D additive manufacturing may be the only known method for constructing nanobots, which will overcome the speed disadvantage of 3D additive printing, thereby enabling the technology to be widely deployed in every manufacturing aspect. If millions of nanobots worked together, they might be able to do amazing manufacturing takes. Microscopic Surgery Scientists and researchers constructed teams of nanobots able to perform microscopic surgery inside a patient’s body. Some groups of nanobots have been programmed to build objects by arranging atoms precisely so there would be no waste. Other nanobots might even be designed to build more nanobots to replace ones that wear out! Compared to other areas of science like manufacturing and biology, nanotechnology is a very new area of 3D printing research. Working with microns and nanometers is still a very slow and difficult task. Carbon Fiber Also, material scientists and metallurgists are constantly providing engineers, and manufacturers with new and superior materials to make parts in the most economical and effective means. Carbon-fiber composites, for instance, are replacing steel and aluminum in products ranging from simple mountain bikes to sophisticated airliners. Sometimes the materials are farmed, cultivated and may be grown from biological substances and from micro-organisms that have been genetically engineered for the task of fabricating useful parts. Facing the benefits of the current evolution of 3D printing technology, companies from all parts in the supply chain are experiencing the opportunities and threatens it may bring. First, to traditional logistic companies, 3D printing is causing a decline in the cargo industry, reducing the demand for long-distance transportation such as air, sea and rail freight industries. The logistic companies which did not realize the current evolution may not adapt rapidly enough to the new situation. As every coin has two sides, with 3D Printing, logistics companies could also become able to act as the manufacturers. The ability to produce highly complex designs with powerful computer software and turn them into real objects with 3D printing is creating a new design language. 3D-printed items often have an organic, natural look. “Nature has come up with some very efficient designs, Figure 1.3. Often it is prudent to mimic them,” particularly in medical devices. By incorporating the fine, lattice-like internal structure of natural bone into a metal implant, for instance, the implant can be made lighter than a machined one without any loss of strength. It can integrate more easily with the patient's own bones and be grafted precisely to fit the intended patient. Surgeons printed a new titanium jaw for a woman suffering from a chronic bone infection. 3D additive manufacturing promises sizable savings in material costs. In the aerospace industry, metal parts are often machined from a solid billet of costly high-grade titanium. This constitutes 90% of material that is wasted. However, titanium powder can be used to print parts such as a bracket for an aircraft door or part of a satellite. These can be as strong as a machined part, but use only 10% of the raw material. A Boeing F-18 fighter contains a number of printed parts such as air ducts, reducing part weight by at least 30%. Remote Manufacturing 3D Printers Replicator can scan an object in one place while simultaneously communicating to another machine, locally or globally, developed to build a replica object. For example, urgently needed spares could be produced in remote places without having to ship the original object. Even parts that are no longer available could be replicated by scanning a broken item, repairing it virtually, and then printing a new one. It is likely digital libraries will appear online for parts and products that are no longer available. Just as the emergence of e-books means books may never go out of print, components could always remain available. Service mechanics could have portable 3D printers in their vans and hardware stores could offer part-printing services. DIY Market Some entrepreneurs already have desktop 3D printers at home. Industrial desktop 3D printing machines are creating an entirely new market. This market is made up of hobbyists, do-it-yourself enthusiasts, tinkerers, inventors, researchers, and entrepreneurs. Some 3D-printing systems can be built from kits and use open-source software. Machinists may be replaced someday by software technicians who service production machines. 3D printers would be invaluable in remote areas. Rather than waiting days for the correct tool to be delivered, you could instantly print the tool on the job. Printing Materials However, each method has its own benefits and downsides. Some 3D printer manufacturers consequently offer a choice between powder and polymer for the material from which the object is built. Some manufacturer use standard, off-the-shelf business paper as the build material to produce a durable prototype. Speed, cost of the 3D printer, cost of the printed prototype, and the cost of choice materials and color capabilities are the main considerations in selecting a 3D printing machine. SLA – DLP - FDM – SLS - SLM & EBM The expansive world of 3D printing machines has become a confusing place for beginners and professionals alike. The most well-known 3D printing techniques and types of 3D printing machines are stated below. The 3D printing technology is categorized according to the type of technology utilized. The categories are stated as follows: Stereolithography(SLA) Digital Light Processing(DLP) Fused deposition modeling (FDM) Selective Laser Sintering (SLS) Selective laser melting (SLM) Electronic Beam Melting (EBM) Laminated object manufacturing (LOM) Also, the book provides a detailed guide and optimum implementations to each of the stated 3D printing technology, the basic understanding of its operation, and the similarity as well as the dissimilarity functions of each printer. School Students, University undergraduates, and post graduate students will find the book of immense value to equip them not only with the fundamental in design and implementation but also will encourage them to acquire a system and practice creating their own innovative samples. Furthermore, professionals and educators will be well prepared to use the knowledge and the expertise to practice and advance the technology for the ultimate good of their respective organizations. Global Equal Standing Manufacturers large and small play a significant part in the any country’s economy. The U.S. economy; rendering to the United States Census Bureau, manufacturers are the nation’s fourth-largest employer, and ship several trillions of dollars in goods per annum. It may be a large automotive enterprise manufacturing vehicles or an institution with less than 50 employees. Manufacturers are vital to the country’s global success. However, many societies have misunderstandings about the manufacturing jobs are undesirable jobs and offers low-paying compensations. Other countries may be discouraged to compete against USA. Additive Manufacturing Technology – 3D Printing would level the manufacturing plane field, enabling all countries to globally stand on equal footing. Dr. Sabrie Soloman, Chairman & CEO 3D Printing & Design Not ever previously consumer has had a technology where we so easily interpret the concepts into a touchable object with little concern to the machinery or talents available. 3D Printing Technology builds up parts by adding materials one layer at a time based on a computerized 3D solid model. It allows design optimization and the producing of customized parts on-demand. Its advantages over conventional manufacturing have captivated the imagination of the public, reflected in recent corporate implementations and in many academic publications that call additive manufacturing the “Fourth Industrial Revolution.” 3D Printing produces 3D solid items from a digital computer file. The printing occurs in an additive process, where a solid object is generated through the consecutive layering of material. The process begins with the generation of a 3D digital file such as CAD file. The 3D digital file is then directed to a 3D Printer for printing using a simple print command. Freed of the constraints of traditional factories, additive manufacturing allows designers to produce parts that were previously considered far too complex to make economically. Engineers and Biologists are finding practical applications to use 3D additive manufacturing. It permits novel designs to become matchless rare-products that were not likely with preceding manufacturing methods. 3D Printing Technology is poised to transform medicine and biology with bio-manufacturing, and traditional manufacturing into 3D Printing. This technology has the possibility to upsurge the well-being of a nation’s citizens. Additive manufacturing may progress the worldwide resources and energy effectiveness in “Ground, Sea and Air.” This 3D Printing & Design book will enable you to develop and 3D Print your own unique object using myriads of available worldwide materials. One-off prototypes can be hideously expensive to produce, but a 3D Printer can bring down the cost by a sizable margin. Many consumers goods, mechanical parts, aerospace, automobiles, robots, shoes, fashions, architects' models, dentures, hearing aids, cell biology, now appear in a 3D-printed form for appraisal by engineers, stylists, biologist, and clients before obtaining the final approval. The 3D Printing Technology provides the additional advantage of removing many overhead manufacturing costs and time-delay. The rewards are substantial, as it permits product development teams effortlessly, rapidly and cost effectively yielding models, prototypes, and patterns to be manufactured in hours or days rather than weeks, or months.