Author: Alec Feinberg
Publisher: John Wiley & Sons
ISBN: 1119276225
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Thermodynamic degradation science is a new and exciting discipline. This book merges the science of physics of failure with thermodynamics and shows how degradation modeling is improved and enhanced when using thermodynamic principles. The author also goes beyond the traditional physics of failure methods and highlights the importance of having new tools such as “Mesoscopic” noise degradation measurements for prognostics of complex systems, and a conjugate work approach to solving physics of failure problems with accelerated testing applications. Key features: • Demonstrates how the thermodynamics energy approach uncovers key degradation models and their application to accelerated testing. • Demonstrates how thermodynamic degradation models accounts for cumulative stress environments, effect statistical reliability distributions, and are key for reliability test planning. • Provides coverage of the four types of Physics of Failure processes describing aging: Thermal Activation Processes, Forced Aging, Diffusion, and complex combinations of these. • Coverage of numerous key topics including: aging laws; Cumulative Accelerated Stress Test (CAST) Plans; cumulative entropy fatigue damage; reliability statistics and environmental degradation and pollution. Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing, Fatigue and Reliability Applications is essential reading for reliability, cumulative fatigue, and physics of failure engineers as well as students on courses which include thermodynamic engineering and/or physics of failure coverage.
Thermodynamic Degradation Science
Author: Alec Feinberg
Publisher: John Wiley & Sons
ISBN: 1119276225
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Thermodynamic degradation science is a new and exciting discipline. This book merges the science of physics of failure with thermodynamics and shows how degradation modeling is improved and enhanced when using thermodynamic principles. The author also goes beyond the traditional physics of failure methods and highlights the importance of having new tools such as “Mesoscopic” noise degradation measurements for prognostics of complex systems, and a conjugate work approach to solving physics of failure problems with accelerated testing applications. Key features: • Demonstrates how the thermodynamics energy approach uncovers key degradation models and their application to accelerated testing. • Demonstrates how thermodynamic degradation models accounts for cumulative stress environments, effect statistical reliability distributions, and are key for reliability test planning. • Provides coverage of the four types of Physics of Failure processes describing aging: Thermal Activation Processes, Forced Aging, Diffusion, and complex combinations of these. • Coverage of numerous key topics including: aging laws; Cumulative Accelerated Stress Test (CAST) Plans; cumulative entropy fatigue damage; reliability statistics and environmental degradation and pollution. Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing, Fatigue and Reliability Applications is essential reading for reliability, cumulative fatigue, and physics of failure engineers as well as students on courses which include thermodynamic engineering and/or physics of failure coverage.
Publisher: John Wiley & Sons
ISBN: 1119276225
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Thermodynamic degradation science is a new and exciting discipline. This book merges the science of physics of failure with thermodynamics and shows how degradation modeling is improved and enhanced when using thermodynamic principles. The author also goes beyond the traditional physics of failure methods and highlights the importance of having new tools such as “Mesoscopic” noise degradation measurements for prognostics of complex systems, and a conjugate work approach to solving physics of failure problems with accelerated testing applications. Key features: • Demonstrates how the thermodynamics energy approach uncovers key degradation models and their application to accelerated testing. • Demonstrates how thermodynamic degradation models accounts for cumulative stress environments, effect statistical reliability distributions, and are key for reliability test planning. • Provides coverage of the four types of Physics of Failure processes describing aging: Thermal Activation Processes, Forced Aging, Diffusion, and complex combinations of these. • Coverage of numerous key topics including: aging laws; Cumulative Accelerated Stress Test (CAST) Plans; cumulative entropy fatigue damage; reliability statistics and environmental degradation and pollution. Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing, Fatigue and Reliability Applications is essential reading for reliability, cumulative fatigue, and physics of failure engineers as well as students on courses which include thermodynamic engineering and/or physics of failure coverage.
Thermodynamic Foundations of the Earth System
Author: Axel Kleidon
Publisher: Cambridge University Press
ISBN: 1316558592
Category : Science
Languages : en
Pages : 397
Book Description
Thermodynamics sets fundamental laws for all physical processes and is central to driving and maintaining planetary dynamics. But how do Earth system processes perform work, where do they derive energy from, and what are the limits? This accessible book describes how the laws of thermodynamics apply to Earth system processes, from solar radiation to motion, geochemical cycling and biotic activity. It presents a novel view of the thermodynamic Earth system explaining how it functions and evolves, how different forms of disequilibrium are being maintained, and how evolutionary trends can be interpreted as thermodynamic trends. It also offers an original perspective on human activity, formulating this in terms of a thermodynamic, Earth system process. This book uses simple conceptual models and basic mathematical treatments to illustrate the application of thermodynamics to Earth system processes, making it ideal for researchers and graduate students across a range of Earth and environmental science disciplines.
Publisher: Cambridge University Press
ISBN: 1316558592
Category : Science
Languages : en
Pages : 397
Book Description
Thermodynamics sets fundamental laws for all physical processes and is central to driving and maintaining planetary dynamics. But how do Earth system processes perform work, where do they derive energy from, and what are the limits? This accessible book describes how the laws of thermodynamics apply to Earth system processes, from solar radiation to motion, geochemical cycling and biotic activity. It presents a novel view of the thermodynamic Earth system explaining how it functions and evolves, how different forms of disequilibrium are being maintained, and how evolutionary trends can be interpreted as thermodynamic trends. It also offers an original perspective on human activity, formulating this in terms of a thermodynamic, Earth system process. This book uses simple conceptual models and basic mathematical treatments to illustrate the application of thermodynamics to Earth system processes, making it ideal for researchers and graduate students across a range of Earth and environmental science disciplines.
Towards a Thermodynamic Theory for Ecological Systems
Author: S.E. Jorgensen
Publisher: Elsevier
ISBN: 9780080441672
Category : Science
Languages : en
Pages : 388
Book Description
The book presents a consistent and complete ecosystem theory based on thermodynamic concepts. The first chapters are devoted to an interpretation of the first and second law of thermodynamics in ecosystem context. Then Prigogine's use of far from equilibrium thermodynamic is used on ecosystems to explain their reactions to perturbations. The introduction of the concept exergy makes it possible to give a more profound and comprehensive explanation of the ecosystem's reactions and growth-patterns. A tentative fourth law of thermodynamic is formulated and applied to facilitate these explanations. The trophic chain, the global energy and radiation balance and pattern and the reactions of ecological networks are all explained by the use of exergy. Finally, it is discussed how the presented theory can be applied more widely to explain ecological observations and rules, to assess ecosystem health and to develop ecological models.
Publisher: Elsevier
ISBN: 9780080441672
Category : Science
Languages : en
Pages : 388
Book Description
The book presents a consistent and complete ecosystem theory based on thermodynamic concepts. The first chapters are devoted to an interpretation of the first and second law of thermodynamics in ecosystem context. Then Prigogine's use of far from equilibrium thermodynamic is used on ecosystems to explain their reactions to perturbations. The introduction of the concept exergy makes it possible to give a more profound and comprehensive explanation of the ecosystem's reactions and growth-patterns. A tentative fourth law of thermodynamic is formulated and applied to facilitate these explanations. The trophic chain, the global energy and radiation balance and pattern and the reactions of ecological networks are all explained by the use of exergy. Finally, it is discussed how the presented theory can be applied more widely to explain ecological observations and rules, to assess ecosystem health and to develop ecological models.
Introduction to Thermodynamics of Mechanical Fatigue
Author: Michael M. Khonsari
Publisher: CRC Press
ISBN: 1466511796
Category : Science
Languages : en
Pages : 168
Book Description
Fatigue is probabilistic in nature and involves a complex spectrum of loading history with variable amplitudes and frequencies. Yet most available fatigue failure prediction methods are empirical and concentrate on very specific types of loading. Taking a different approach, Introduction to Thermodynamics of Mechanical Fatigue examines the treatment of fatigue via the principles of thermodynamics. It starts from the premise that fatigue is a dissipative process and must obey the laws of thermodynamics. In general, it can be hypothesized that mechanical degradation is a consequence of irreversible thermodynamic processes. This suggests that entropy generation offers a natural measure of degradation. An Entropic Approach to Fatigue and Degradation Drawing on recent cutting-edge research and development, the authors present a unified entropic approach to problems involving fatigue. They introduce the fundamentals of fatigue processes and explore a wide range of practical engineering applications. Fundamental Concepts and Methodologies The book reviews commonly observed failure modes, discusses how to analyze fatigue problems, and examines the deformation characteristics of a solid material subjected to fatigue loading. It also looks at how to use thermodynamics to determine the onset of fatigue failure. In addition, the book presents methodologies for improving fatigue life and for accelerated fatigue testing. Learn How to Apply the Entropic Approach to Fatigue Problems Comprehensive and well organized, this work helps readers apply powerful thermodynamics concepts to effectively treat fatigue problems at the design stage. It offers an accessible introduction to a new and exciting area of research in the field of fatigue failure analysis.
Publisher: CRC Press
ISBN: 1466511796
Category : Science
Languages : en
Pages : 168
Book Description
Fatigue is probabilistic in nature and involves a complex spectrum of loading history with variable amplitudes and frequencies. Yet most available fatigue failure prediction methods are empirical and concentrate on very specific types of loading. Taking a different approach, Introduction to Thermodynamics of Mechanical Fatigue examines the treatment of fatigue via the principles of thermodynamics. It starts from the premise that fatigue is a dissipative process and must obey the laws of thermodynamics. In general, it can be hypothesized that mechanical degradation is a consequence of irreversible thermodynamic processes. This suggests that entropy generation offers a natural measure of degradation. An Entropic Approach to Fatigue and Degradation Drawing on recent cutting-edge research and development, the authors present a unified entropic approach to problems involving fatigue. They introduce the fundamentals of fatigue processes and explore a wide range of practical engineering applications. Fundamental Concepts and Methodologies The book reviews commonly observed failure modes, discusses how to analyze fatigue problems, and examines the deformation characteristics of a solid material subjected to fatigue loading. It also looks at how to use thermodynamics to determine the onset of fatigue failure. In addition, the book presents methodologies for improving fatigue life and for accelerated fatigue testing. Learn How to Apply the Entropic Approach to Fatigue Problems Comprehensive and well organized, this work helps readers apply powerful thermodynamics concepts to effectively treat fatigue problems at the design stage. It offers an accessible introduction to a new and exciting area of research in the field of fatigue failure analysis.
Biology for AP ® Courses
Author: Julianne Zedalis
Publisher:
ISBN: 9781947172401
Category : Biology
Languages : en
Pages : 1923
Book Description
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
Publisher:
ISBN: 9781947172401
Category : Biology
Languages : en
Pages : 1923
Book Description
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
Introduction to Thermodynamics of Mechanical Fatigue
Author: Michael M. Khonsari
Publisher: CRC Press
ISBN: 146651180X
Category : Science
Languages : en
Pages : 164
Book Description
Fatigue is probabilistic in nature and involves a complex spectrum of loading history with variable amplitudes and frequencies. Yet most available fatigue failure prediction methods are empirical and concentrate on very specific types of loading. Taking a different approach, Introduction to Thermodynamics of Mechanical Fatigue examines the treatmen
Publisher: CRC Press
ISBN: 146651180X
Category : Science
Languages : en
Pages : 164
Book Description
Fatigue is probabilistic in nature and involves a complex spectrum of loading history with variable amplitudes and frequencies. Yet most available fatigue failure prediction methods are empirical and concentrate on very specific types of loading. Taking a different approach, Introduction to Thermodynamics of Mechanical Fatigue examines the treatmen
Non-Equilibrium Thermodynamics
Author: S. R. De Groot
Publisher: Courier Corporation
ISBN: 0486153509
Category : Science
Languages : en
Pages : 532
Book Description
Classic monograph treats irreversible processes and phenomena of thermodynamics: non-equilibrium thermodynamics. Covers statistical foundations and applications with chapters on fluctuation theory, theory of stochastic processes, kinetic theory of gases, more.
Publisher: Courier Corporation
ISBN: 0486153509
Category : Science
Languages : en
Pages : 532
Book Description
Classic monograph treats irreversible processes and phenomena of thermodynamics: non-equilibrium thermodynamics. Covers statistical foundations and applications with chapters on fluctuation theory, theory of stochastic processes, kinetic theory of gases, more.
A History of Thermodynamics
Author: Ingo Müller
Publisher: Springer Science & Business Media
ISBN: 3540462279
Category : Science
Languages : en
Pages : 336
Book Description
This book offers an easy to read, all-embracing history of thermodynamics. It describes the long development of thermodynamics, from the misunderstood and misinterpreted to the conceptually simple and extremely useful theory that we know today. Coverage identifies not only the famous physicists who developed the field, but also engineers and scientists from other disciplines who helped in the development and spread of thermodynamics as well.
Publisher: Springer Science & Business Media
ISBN: 3540462279
Category : Science
Languages : en
Pages : 336
Book Description
This book offers an easy to read, all-embracing history of thermodynamics. It describes the long development of thermodynamics, from the misunderstood and misinterpreted to the conceptually simple and extremely useful theory that we know today. Coverage identifies not only the famous physicists who developed the field, but also engineers and scientists from other disciplines who helped in the development and spread of thermodynamics as well.
Systems Science
Author: Yi Lin
Publisher: CRC Press
ISBN: 1439895511
Category : Business & Economics
Languages : en
Pages : 403
Book Description
By making use of the principles of systems science, the scientific community can explain many complicated matters of the world and shed new light on unsettled problems. Each real science has its own particular methodology for not only qualitative but also quantitative analyses, so it is important to understand the organic whole of systems research with operable mathematical methods. Systems Science: Methodological Approaches presents a mathematical explanation of systems science, giving readers a complete technical formulation of different systemic laws. It enables them to use a unified methodology to attack different problems that are hard, if not impossible, for modern science to handle. Following a brief history of systems science, the book explores: Basic concepts, characteristics, properties, and classifications of general systems Nonlinear systems dynamics and the theory of catastrophe Dissipative structures and synergistics Studies of chaos, including logistic mapping, phase space reconstruction, Lyapunov exponents, and chaos of general single relation systems Different aspects and concepts of fractals, including a presentation of L systems analysis and design Complex systems and complexity, with a discussion of how the phenomena of "three" and complexity are related, and how various cellular automata can be constructed to generate useful simulations and figurative patterns Complex adaptive systems and open complex giant systems, with introduction of the yoyo model and practical applications Complex networks and related concepts and methods The book concludes with several case studies that demonstrate how various concepts and the logic of systems can be practically applied to resolve real-life problems, such as the prediction of natural disasters. The book will be useful in directing future research and applications of systems science on a commonly accepted platform and playground.
Publisher: CRC Press
ISBN: 1439895511
Category : Business & Economics
Languages : en
Pages : 403
Book Description
By making use of the principles of systems science, the scientific community can explain many complicated matters of the world and shed new light on unsettled problems. Each real science has its own particular methodology for not only qualitative but also quantitative analyses, so it is important to understand the organic whole of systems research with operable mathematical methods. Systems Science: Methodological Approaches presents a mathematical explanation of systems science, giving readers a complete technical formulation of different systemic laws. It enables them to use a unified methodology to attack different problems that are hard, if not impossible, for modern science to handle. Following a brief history of systems science, the book explores: Basic concepts, characteristics, properties, and classifications of general systems Nonlinear systems dynamics and the theory of catastrophe Dissipative structures and synergistics Studies of chaos, including logistic mapping, phase space reconstruction, Lyapunov exponents, and chaos of general single relation systems Different aspects and concepts of fractals, including a presentation of L systems analysis and design Complex systems and complexity, with a discussion of how the phenomena of "three" and complexity are related, and how various cellular automata can be constructed to generate useful simulations and figurative patterns Complex adaptive systems and open complex giant systems, with introduction of the yoyo model and practical applications Complex networks and related concepts and methods The book concludes with several case studies that demonstrate how various concepts and the logic of systems can be practically applied to resolve real-life problems, such as the prediction of natural disasters. The book will be useful in directing future research and applications of systems science on a commonly accepted platform and playground.
Thermodynamics and Statistical Mechanics
Author: M. Scott Shell
Publisher: Cambridge University Press
ISBN: 1107014530
Category : Science
Languages : en
Pages : 499
Book Description
Learn classical thermodynamics alongside statistical mechanics and how macroscopic and microscopic ideas interweave with this fresh approach to the subjects.
Publisher: Cambridge University Press
ISBN: 1107014530
Category : Science
Languages : en
Pages : 499
Book Description
Learn classical thermodynamics alongside statistical mechanics and how macroscopic and microscopic ideas interweave with this fresh approach to the subjects.