Thermo-hydro-mechanical Analysis of Fractures and Wellbores in Petroleum/Geothermal Reservoirs

Thermo-hydro-mechanical Analysis of Fractures and Wellbores in Petroleum/Geothermal Reservoirs PDF Author: Mohammadreza Safariforoshani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The thesis considers three-dimensional analyses of fractures and wellbores in low-permeability petroleum/geothermal reservoirs, with a special emphasis on the role of coupled thermo-hydro-mechanical processes. Thermoporoelastic displacement discontinuity and stress discontinuity methods are elaborated for infinite media. Furthermore, injection/production-induced mass and heat transport inside fractures are studied by coupling the displacement discontinuity method with the finite element method. The resulting method is then used to simulate problems of interest in wellbores and fractures for related to drilling and stimulation. In the examination of fracture deformation, the nonlinear behavior of discontinuities and the change in status from joint (hydraulically open, mechanically closed) to hydraulic fracture (hydraulically open, mechanically open) are taken into account. Examples are presented to highlight the versatility of the method and the role of thermal and hydraulic effects, three-dimensionality, hydraulic/natural fracture deformation, and induced micro earthquakes. Specifically, injection/extraction operations in enhanced geothermal reservoirs and hydraulic/thermal stimulation of fractured reservoirs are studied and analyzed with reference to induced seismicity. In addition, the fictitious stress method is used to study three-dimensional wellbore stresses in the presence of a weakness plane. It is shown that the coupling of hydro-thermo-mechanical processes plays a very important role in low-permeability reservoirs and should be considered when predicting the behavior of fractures and wellbores. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151272

Thermo-hydro-mechanical Analysis of Fractures and Wellbores in Petroleum/Geothermal Reservoirs

Thermo-hydro-mechanical Analysis of Fractures and Wellbores in Petroleum/Geothermal Reservoirs PDF Author: Mohammadreza Safariforoshani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The thesis considers three-dimensional analyses of fractures and wellbores in low-permeability petroleum/geothermal reservoirs, with a special emphasis on the role of coupled thermo-hydro-mechanical processes. Thermoporoelastic displacement discontinuity and stress discontinuity methods are elaborated for infinite media. Furthermore, injection/production-induced mass and heat transport inside fractures are studied by coupling the displacement discontinuity method with the finite element method. The resulting method is then used to simulate problems of interest in wellbores and fractures for related to drilling and stimulation. In the examination of fracture deformation, the nonlinear behavior of discontinuities and the change in status from joint (hydraulically open, mechanically closed) to hydraulic fracture (hydraulically open, mechanically open) are taken into account. Examples are presented to highlight the versatility of the method and the role of thermal and hydraulic effects, three-dimensionality, hydraulic/natural fracture deformation, and induced micro earthquakes. Specifically, injection/extraction operations in enhanced geothermal reservoirs and hydraulic/thermal stimulation of fractured reservoirs are studied and analyzed with reference to induced seismicity. In addition, the fictitious stress method is used to study three-dimensional wellbore stresses in the presence of a weakness plane. It is shown that the coupling of hydro-thermo-mechanical processes plays a very important role in low-permeability reservoirs and should be considered when predicting the behavior of fractures and wellbores. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151272

Thermo-Hydro-Mechanical Coupling in Fractured Rock

Thermo-Hydro-Mechanical Coupling in Fractured Rock PDF Author: Hans-Joachim Kümpel
Publisher: Birkhäuser
ISBN: 3034880839
Category : Science
Languages : en
Pages : 355

Get Book Here

Book Description
(4). The next three papers extend these views by taking a closer look on parameters that govern hydraulic diffusivity in sandstones and other types of rocks. Specific targets addressed are the influence of differential stress on permeability (5), imaging of the fracture geometry (6), and pressure induced variations in the pore geometry (7). Contributions no. 8 to 10 cover investigations of permeability-porosity relationships during rock evolution (8), of the formation, propagation, and roughness of fractures in a plexi-glass block (9), and pressure oscillation effects of two-phase flow under controlled conditions (10). The subsequent four articles focus on diverse modeling approaches. Issues considered are how the geometry and the mechanical behavior of fractures can be characterized by mathematical expressions (11), how the evolution of permeability in a microcracking rock can be expressed by an analytical model (12), deviations from the cubic law for a fracture of varying aperture (13), and the numerical simulation of scale effects in flow through fractures (14). Three further papers refer to in situ observations, being related to topics as the assessment of in situ permeability from the spatio temporal distribution of an aftershock sequence (15), to the scale dependence of hydraulic pathways in crystalline rock (16), and to the significance of pore pressure - stress coupling in deep tunnels and galleries (17).

Coupled Thermo-Hydro-Mechanical-Chemical Processes in Fractured Rocks

Coupled Thermo-Hydro-Mechanical-Chemical Processes in Fractured Rocks PDF Author: Zhihong Zhao
Publisher: Springer Nature
ISBN: 9819962102
Category : Science
Languages : en
Pages : 267

Get Book Here

Book Description
This book presents the coupled Thermo-Hydro-Mechanical-Chemical (THMC) processes in fractured rocks at varying scales from single fractures to fracture networks. It also discussed the implication and potential application of the advanced understanding of coupled THMC processes in fractured rocks for geotechnical and geo-energy engineering.

Numerical study of the stimulation related thermo-hydro-mechanical processes in tight gas and deep geothermal reservoirs

Numerical study of the stimulation related thermo-hydro-mechanical processes in tight gas and deep geothermal reservoirs PDF Author: Wentao Feng
Publisher: Cuvillier Verlag
ISBN: 3736961707
Category : Technology & Engineering
Languages : en
Pages : 204

Get Book Here

Book Description
Hydraulic fracturing in combination with horizontal well is playing a key role in the efficient development of unconventional gas/oil reservoirs and deep geothermal resources. However, the integral operation, especially from the perspective of THM (Thermal-Hydraulic-Mechanic) interactions have not been studied systematically. In this thesis, targeted improvements were achieved through developing a series of mathematical/physical models, and their implementation into the existing numerical tools (FLAC3Dplus and TOUGH2MP-FLAC3D), including: (a) a new thermal module for FLAC3Dplus based entirely on the finite volume method (FVM), which is especially developed for the fracturing process and can also achieve the modeling of gel breaking; (b) a rock damage module of TOUGH2MP-FLAC3D, which also considers the impacts of rock damaging process on evolution of permeability; (c) an in-depth improved FLAC3Dplus simulator that obtains the ability to simulate a 3D fracture propagation with arbitrary orientation. After the corresponding verifications, the improved tools were applied in different case studies to reveal: a) influences of the fluid’s viscosity on the fracturing results in tight sandstone reservoirs; b) the induced seismicity during the fracturing operation and the reactivation of the natural faults; and c) the fracture propagation with arbitrary orientation.

Coupled Thermo-Hydro-Mechanical Processes of Fractured Media

Coupled Thermo-Hydro-Mechanical Processes of Fractured Media PDF Author: O. Stephanson
Publisher: Elsevier
ISBN: 0080542859
Category : Science
Languages : en
Pages : 597

Get Book Here

Book Description
This work brings together the results, information and data that emerged from an international cooperative project, DECOVALEX, 1992-1995. This project was concerned with the mathematical and experimental studies of coupled thermo(T) -hydro(H) -mechanical(M) processes in fractured media related to radioactive waste disposal. The book presents, for the first time, the systematic formulation of mathematical models of the coupled T-H-M processes of fractured media, their validation against theoretical bench-mark tests, and experimental studies at both laboratory and field scales. It also presents, for the first time, a comprehensive analysis of continuum, and discrete approaches to the study of the problems of (as well as a complete description of), the computer codes applied to the studies. The first two chapters provide a conceptual introduction to the coupled T-H-M processes in fractured media and the DECOVALEX project. The next seven chapters give a state-of-the-art survey of the constitutive models of rock fractures and formulation of coupled T-H-M phenomena with continuum and discontinuum approaches, and associated numerical methods. A study on the three generic Bench-Mark Test problems and six Test Case problems of laboratory and field experiments are reported in chapters 10 to 18. Chapter 19 contains lessons learned during the project. The research contained in this book will be valuable for designers, practising engineers and national waste management officials who are concerned with planning, design and performance, and safety assessments of radioactive waste repositories. Researchers and postgraduate students working in this field will also find the book of particular relevance.

A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

Fractures in Geothermal Reservoirs

Fractures in Geothermal Reservoirs PDF Author: Geothermal Resources Council
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 352

Get Book Here

Book Description


Hydraulic fracture geometry characterization based on distributed fiber optic strain measurements

Hydraulic fracture geometry characterization based on distributed fiber optic strain measurements PDF Author: Kan Wu
Publisher: Elsevier
ISBN: 0323953611
Category : Technology & Engineering
Languages : en
Pages : 296

Get Book Here

Book Description
Fiber optic-based measurements are innovative tools for the oil and gas industry to utilize in monitoring wells in a variety of applications including geothermal activity. Monitoring unconventional reservoirs is still challenging due to complex subsurface conditions and current research focuses on qualitative interpretation of field data. Hydraulic Fracture Geometry Characterization from Fiber Optic-Based Strain Measurements delivers a critical reference for reservoir and completion engineers to better quantify the propagation process and evolution of fracture geometry with a forward model and novel inversion model. The reference reviews different fiber optic-based temperature, acoustic, and strain measurements for monitoring fracture behaviors and includes advantages and limitations of each measurement, giving engineers a better understanding of measurements applied in all types of subsurface formations. Stress/strain rate responses on rock deformation are given a holistic approach, including guidelines and an automatic algorithm for identification of fracture hits. Last, a novel inversion model is introduced to show how fracture geometry can be used for optimization on well placement decisions. Supported by case studies, Hydraulic Fracture Geometry Characterization from Fiber Optic-Based Strain Measurements gives today’s engineers better understanding of all complex subsurface measurements through fiber optic technology. Examine the basics of distributed fiber optic strain measurements Conduct a detailed analysis of strain responses observed in both horizontal and vertical monitoring wells Present a systematic approach for interpreting strain data measured in the field Highlight the significant insights and values that can be derived from the field measured strain dataset Support monitoring and modeling for subsurface energy extraction and safe storage

Applied Concepts in Fractured Reservoirs

Applied Concepts in Fractured Reservoirs PDF Author: John C. Lorenz
Publisher: John Wiley & Sons
ISBN: 1119055865
Category : Science
Languages : en
Pages : 240

Get Book Here

Book Description
A much-needed, precise and practical treatment of a key topic in the energy industry and beyond, Applied Concepts in Fractured Reservoirs is an invaluable reference for those in both industry and academia Authored by renowned experts in the field, this book covers the understanding, evaluation, and effects of fractures in reservoirs. It offers a comprehensive yet practical discussion and description of natural fractures, their origins, characteristics, and effects on hydrocarbon reservoirs. It starts by introducing the reader to basic definitions and classifications of fractures and fractured reservoirs. It then provides an outline for fractured-reservoir characterization and analysis, and goes on to introduce the way fractures impact operational activities. Well organized and clearly illustrated throughout, Applied Concepts in Fractured Reservoirs starts with a section on understanding natural fractures. It looks at the different types, their dimensions, and the mechanics of fracturing rock in extension and shear. The next section provides information on measuring and analyzing fractures in reservoirs. It covers: logging core for fractures; taking, measuring, and analyzing fracture data; new core vs. archived core; CT scans; comparing fracture data from outcrops, core, and logs; and more. The last part examines the effects of natural fractures on reservoirs, including: the permeability behavior of individual fractures and fracture systems; fracture volumetrics; effects of fractures on drilling and coring; and the interaction between natural and hydraulic fractures. Teaches readers to understand and evaluate fractures Compiles and synthesizes various concepts and descriptions scattered in literature and synthesizes them with unpublished oil-field observations and data, along with the authors’ own experience Bridges some of the gaps between reservoir engineers and geologists Provides an invaluable reference for geologists and engineers who need to understand naturally fractured reservoirs in order to efficiently extract hydrocarbons Illustrated in full color throughout Companion volume to the Atlas of Natural and Induced Fractures in Core

Hydraulic Fracturing in Unconventional Reservoirs

Hydraulic Fracturing in Unconventional Reservoirs PDF Author: Hoss Belyadi
Publisher: Gulf Professional Publishing
ISBN: 0128498625
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis introduces the basic characteristics and theories surrounding hydraulic fracturing and the main process of fracturing in shale, including the main workflow, the details in case analysis, and the fundamental differences between theory, study, and practical operation. The book takes the complex nature of the hydraulic fracturing in unconventional reservoirs and applies a practical approach that can be useds as a workflow for designing fracture treatments in various shale basins across the world. Providing the audience with theories, best practices, operation and execution, and economic analysis of hydraulic fracturing in unconventional reservoirs, this reference guides the engineer and manager through broad topics including an introduction to unconventional reservoirs, advanced shale reservoir characterization, and shale gas in place calculation as well as expanding to basic theories of hydraulic fracturing and advanced topics in shale reservoir stimulation. Rounding out with coverage on the environmental aspects and practice problems on design and economic analysis, the book delivers the critical link needed between academia and industry for all aspects of hydraulic fracturing operations. Presents basic characteristics of unconventional reservoirs and introductory theories and practices on hydraulic fracturing, including post-fracturing analysis Includes an explanation of company assets and financial responsibility, with coverage on economic evaluation and how to predict decline curves Provides tactics on how to strengthen real-world skills with the inclusion of practice examples at the end of the book