Author: D. Caillard
Publisher: Elsevier
ISBN: 0080542786
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
KEY FEATURES: - A unified, fundamental and quantitative resource. The result of 5 years of investigation from researchers around the world - New data from a range of new techniques, including synchrotron radiation X-ray topography provide safer and surer methods of identifying deformation mechanisms - Informing the future direction of research in intermediate and high temperature processes by providing original treatment of dislocation climb DESCRIPTION: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of thermally activated microscopic mechanisms of dislocation mobility in a range of crystals. The principles of the mechanisms and equations of dislocation motion are revisited and new ones are proposed. These describe mostly friction forces on dislocations such as the lattice resistance to glide or those due to sessile cores, as well as dislocation cross-slip and climb. They are critically assessed by comparison with the best available experimental results of microstructural characterization, in situ straining experiments under an electron or a synchrotron beam, as well as accurate transient mechanical tests such as stress relaxation experiments. Some recent attempts at atomistic modeling of dislocation cores under stress and temperature are also considered since they offer a complementary description of core transformations and associated energy barriers. In addition to offering guidance and assistance for further experimentation, the book indicates new ways to extend the body of data in particular areas such as lattice resistance to glide.
Thermally Activated Mechanisms in Crystal Plasticity
Author: D. Caillard
Publisher: Elsevier
ISBN: 0080542786
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
KEY FEATURES: - A unified, fundamental and quantitative resource. The result of 5 years of investigation from researchers around the world - New data from a range of new techniques, including synchrotron radiation X-ray topography provide safer and surer methods of identifying deformation mechanisms - Informing the future direction of research in intermediate and high temperature processes by providing original treatment of dislocation climb DESCRIPTION: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of thermally activated microscopic mechanisms of dislocation mobility in a range of crystals. The principles of the mechanisms and equations of dislocation motion are revisited and new ones are proposed. These describe mostly friction forces on dislocations such as the lattice resistance to glide or those due to sessile cores, as well as dislocation cross-slip and climb. They are critically assessed by comparison with the best available experimental results of microstructural characterization, in situ straining experiments under an electron or a synchrotron beam, as well as accurate transient mechanical tests such as stress relaxation experiments. Some recent attempts at atomistic modeling of dislocation cores under stress and temperature are also considered since they offer a complementary description of core transformations and associated energy barriers. In addition to offering guidance and assistance for further experimentation, the book indicates new ways to extend the body of data in particular areas such as lattice resistance to glide.
Publisher: Elsevier
ISBN: 0080542786
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
KEY FEATURES: - A unified, fundamental and quantitative resource. The result of 5 years of investigation from researchers around the world - New data from a range of new techniques, including synchrotron radiation X-ray topography provide safer and surer methods of identifying deformation mechanisms - Informing the future direction of research in intermediate and high temperature processes by providing original treatment of dislocation climb DESCRIPTION: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of thermally activated microscopic mechanisms of dislocation mobility in a range of crystals. The principles of the mechanisms and equations of dislocation motion are revisited and new ones are proposed. These describe mostly friction forces on dislocations such as the lattice resistance to glide or those due to sessile cores, as well as dislocation cross-slip and climb. They are critically assessed by comparison with the best available experimental results of microstructural characterization, in situ straining experiments under an electron or a synchrotron beam, as well as accurate transient mechanical tests such as stress relaxation experiments. Some recent attempts at atomistic modeling of dislocation cores under stress and temperature are also considered since they offer a complementary description of core transformations and associated energy barriers. In addition to offering guidance and assistance for further experimentation, the book indicates new ways to extend the body of data in particular areas such as lattice resistance to glide.
Crystal Plasticity Finite Element Methods
Author: Franz Roters
Publisher: John Wiley & Sons
ISBN: 3527642099
Category : Technology & Engineering
Languages : en
Pages : 188
Book Description
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Publisher: John Wiley & Sons
ISBN: 3527642099
Category : Technology & Engineering
Languages : en
Pages : 188
Book Description
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Strengthening Mechanisms in Crystal Plasticity
Author: Ali Argon
Publisher: Oxford University Press on Demand
ISBN: 0198516002
Category : Science
Languages : en
Pages : 425
Book Description
Technologically important metals and alloys have been strengthened throughout history by empirical means. The scientific bases of the central mechanisms of such forms of strengthening, developed over the past several decades are presented here through mechanistic models and associated experimental results.
Publisher: Oxford University Press on Demand
ISBN: 0198516002
Category : Science
Languages : en
Pages : 425
Book Description
Technologically important metals and alloys have been strengthened throughout history by empirical means. The scientific bases of the central mechanisms of such forms of strengthening, developed over the past several decades are presented here through mechanistic models and associated experimental results.
Handbook of Materials Modeling
Author: Sidney Yip
Publisher: Springer Science & Business Media
ISBN: 1402032862
Category : Science
Languages : en
Pages : 2903
Book Description
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.
Publisher: Springer Science & Business Media
ISBN: 1402032862
Category : Science
Languages : en
Pages : 2903
Book Description
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.
Crystal Plasticity
Author: Wojciech Polkowski
Publisher: MDPI
ISBN: 3036508384
Category : Science
Languages : en
Pages : 438
Book Description
The book presents a collection of 25 original papers (including one review paper) on state-of-the art achievements in the theory and practice of crystals plasticity. The articles cover a wide scope of research on materials behavior subjected to external loadings, starting from atomic-scale simulations, and a new methodological aspect, to experiments on a structure and mechanical response upon a large-scale processing. Thus, a presented contribution of researchers from 18 different countries can be virtually divided into three groups, namely (i) “modelling and simulation”; (ii) “methodological aspects”; and (iii) “experiments on process/structure/properties relationship”. Furthermore, a large variety of materials are investigated including more conventional (steels, copper, titanium, nickel, aluminum, and magnesium alloys) and advanced ones (composites or high entropy alloys). The book should be interested for senior students, researchers and engineers working within discipline of materials science and solid state physics of crystalline materials.
Publisher: MDPI
ISBN: 3036508384
Category : Science
Languages : en
Pages : 438
Book Description
The book presents a collection of 25 original papers (including one review paper) on state-of-the art achievements in the theory and practice of crystals plasticity. The articles cover a wide scope of research on materials behavior subjected to external loadings, starting from atomic-scale simulations, and a new methodological aspect, to experiments on a structure and mechanical response upon a large-scale processing. Thus, a presented contribution of researchers from 18 different countries can be virtually divided into three groups, namely (i) “modelling and simulation”; (ii) “methodological aspects”; and (iii) “experiments on process/structure/properties relationship”. Furthermore, a large variety of materials are investigated including more conventional (steels, copper, titanium, nickel, aluminum, and magnesium alloys) and advanced ones (composites or high entropy alloys). The book should be interested for senior students, researchers and engineers working within discipline of materials science and solid state physics of crystalline materials.
Dislocation Mechanism-Based Crystal Plasticity
Author: Zhuo Zhuang
Publisher: Academic Press
ISBN: 0128145927
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. - Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale - Presents crystal plasticity theory without size effect - Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) - Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale
Publisher: Academic Press
ISBN: 0128145927
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. - Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale - Presents crystal plasticity theory without size effect - Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) - Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale
Alloy Physics
Author: Wolfgang Pfeiler
Publisher: John Wiley & Sons
ISBN: 3527614206
Category : Technology & Engineering
Languages : en
Pages : 1003
Book Description
Covering the latest research in alloy physics together with the underlying basic principles, this comprehensive book provides a sound understanding of the structural changes in metals and alloys -- ranging from plastic deformation, deformation dynamics and ordering kinetics right up to atom jump processes, first principle calculations and simulation techniques. Alongside fundamental topics, such as crystal defects, phase transformations and statistical thermodynamics, the team of international authors treats such hot areas as nano-size effects, interfaces, and spintronics, as well as technical applications of modern alloys, like data storage and recording, and the possibilities offered by materials design.
Publisher: John Wiley & Sons
ISBN: 3527614206
Category : Technology & Engineering
Languages : en
Pages : 1003
Book Description
Covering the latest research in alloy physics together with the underlying basic principles, this comprehensive book provides a sound understanding of the structural changes in metals and alloys -- ranging from plastic deformation, deformation dynamics and ordering kinetics right up to atom jump processes, first principle calculations and simulation techniques. Alongside fundamental topics, such as crystal defects, phase transformations and statistical thermodynamics, the team of international authors treats such hot areas as nano-size effects, interfaces, and spintronics, as well as technical applications of modern alloys, like data storage and recording, and the possibilities offered by materials design.
Underneath the Bragg Peaks
Author: Takeshi Egami
Publisher: Elsevier
ISBN: 0080426980
Category : Science
Languages : en
Pages : 424
Book Description
Table of contents
Publisher: Elsevier
ISBN: 0080426980
Category : Science
Languages : en
Pages : 424
Book Description
Table of contents
The Coming of Materials Science
Author: R.W. Cahn
Publisher: Elsevier
ISBN: 0080529429
Category : Technology & Engineering
Languages : en
Pages : 591
Book Description
The Coming of Materials Science both covers the discipline of materials science, and draws an impressionistic map of the present state of the subject.The first chapter examines the emergence of the materials science concept, in both academe and industry. The second and third chapters delve back into the prehistory of materials science, examining the growth of such concepts as atoms, crystals and thermodynamics, and also examine the evolution of a number of neighbouring disciplines, to see what helpful parallels might emerge. The book contains numerous literature references. Many refer to the earliest key papers and books, while others are to sources, often books, offering a view of the present state of a topic. Early references are to the past but as the book continues, it brings the reader up to date with more recent sources.The author, Professor Robert Cahn FRS, has striven to be critical about the history of the discipline of materials science and to draw general conclusions about scientific practice from what he has discovered about the evolution of materials science. Further issues that the book highlights include: What is a scientific discipline? How do disciplines merge and differentiate? Can a discipline also be interdisciplinary? Is materials science a real discipline? A large range of themes is presented in the book and readers are invited to interact with the author if they reach alternative conclusions. This book is not just for reading and reference, but exists to stimulate thought and provoke discussion as well.
Publisher: Elsevier
ISBN: 0080529429
Category : Technology & Engineering
Languages : en
Pages : 591
Book Description
The Coming of Materials Science both covers the discipline of materials science, and draws an impressionistic map of the present state of the subject.The first chapter examines the emergence of the materials science concept, in both academe and industry. The second and third chapters delve back into the prehistory of materials science, examining the growth of such concepts as atoms, crystals and thermodynamics, and also examine the evolution of a number of neighbouring disciplines, to see what helpful parallels might emerge. The book contains numerous literature references. Many refer to the earliest key papers and books, while others are to sources, often books, offering a view of the present state of a topic. Early references are to the past but as the book continues, it brings the reader up to date with more recent sources.The author, Professor Robert Cahn FRS, has striven to be critical about the history of the discipline of materials science and to draw general conclusions about scientific practice from what he has discovered about the evolution of materials science. Further issues that the book highlights include: What is a scientific discipline? How do disciplines merge and differentiate? Can a discipline also be interdisciplinary? Is materials science a real discipline? A large range of themes is presented in the book and readers are invited to interact with the author if they reach alternative conclusions. This book is not just for reading and reference, but exists to stimulate thought and provoke discussion as well.
Wettability at High Temperatures
Author: N. Eustathopoulos
Publisher: Elsevier
ISBN: 0080543782
Category : Technology & Engineering
Languages : en
Pages : 439
Book Description
The purpose of this book is to bring together current scientific understanding of wetting behaviour that has been gained from theoretical models and quantitative experimental observations. The materials considered are liquid metals or inorganic glasses in contact with solid metals or ceramics at temperatures of 200-2000oC. Wetting has been a significant scientific concern for the last two centuries and reference will be made to classical work by nineteenth century scientists such as Dupré, Laplace and Young that was validated by observations of the behaviour of chemically inert ambient temperature systems.In attempting to achieve the aims of the book, the text has been divided into ten Chapters that can be grouped into four stages of presentation. The first stage comprises two Chapters that review established and newly developed models for their relevance to wetting behaviour at high temperatures, including recent models that encompass the role of chemical reactions at the solid/liquid interfaces. Attention is paid both to equilibrium wetting behaviour (Chapter 1) and to the factors that control the approach to equilibrium (Chapter 2). Then follow Chapters concerned with experimental techniques for scientific measurement of the extent of wetting (Chapter 3) and with the surface energy data for both metals and non-metals that are essential for quantitative interpretation of wetting behaviour (Chapter 4). Descriptions of experimentally determined and quantified wetting behaviour are presented and interpreted in the third part comprising five Chapters dealing with the characteristics of metal/metal, metal/oxide, metal/non-oxide, metal/carbon and molten glass/solid systems. The book concludes with a Chapter commenting on the role of wetting behaviour in joining similar and dissimilar materials by liquid route techniques.
Publisher: Elsevier
ISBN: 0080543782
Category : Technology & Engineering
Languages : en
Pages : 439
Book Description
The purpose of this book is to bring together current scientific understanding of wetting behaviour that has been gained from theoretical models and quantitative experimental observations. The materials considered are liquid metals or inorganic glasses in contact with solid metals or ceramics at temperatures of 200-2000oC. Wetting has been a significant scientific concern for the last two centuries and reference will be made to classical work by nineteenth century scientists such as Dupré, Laplace and Young that was validated by observations of the behaviour of chemically inert ambient temperature systems.In attempting to achieve the aims of the book, the text has been divided into ten Chapters that can be grouped into four stages of presentation. The first stage comprises two Chapters that review established and newly developed models for their relevance to wetting behaviour at high temperatures, including recent models that encompass the role of chemical reactions at the solid/liquid interfaces. Attention is paid both to equilibrium wetting behaviour (Chapter 1) and to the factors that control the approach to equilibrium (Chapter 2). Then follow Chapters concerned with experimental techniques for scientific measurement of the extent of wetting (Chapter 3) and with the surface energy data for both metals and non-metals that are essential for quantitative interpretation of wetting behaviour (Chapter 4). Descriptions of experimentally determined and quantified wetting behaviour are presented and interpreted in the third part comprising five Chapters dealing with the characteristics of metal/metal, metal/oxide, metal/non-oxide, metal/carbon and molten glass/solid systems. The book concludes with a Chapter commenting on the role of wetting behaviour in joining similar and dissimilar materials by liquid route techniques.