Thermal Monitoring of the Laser Heat Treating Process

Thermal Monitoring of the Laser Heat Treating Process PDF Author: Shannon S. Breon
Publisher:
ISBN:
Category :
Languages : en
Pages : 90

Get Book Here

Book Description

Thermal Monitoring of the Laser Heat Treating Process

Thermal Monitoring of the Laser Heat Treating Process PDF Author: Shannon S. Breon
Publisher:
ISBN:
Category :
Languages : en
Pages : 90

Get Book Here

Book Description


Advances in Laser Materials Processing

Advances in Laser Materials Processing PDF Author: Jonathan R. Lawrence
Publisher: Woodhead Publishing
ISBN: 0081012535
Category : Technology & Engineering
Languages : en
Pages : 802

Get Book Here

Book Description
Advances in Laser Materials Processing: Technology, Research and Application, Second Edition, provides a revised, updated and expanded overview of the area, covering fundamental theory, technology and methods, traditional and emerging applications and potential future directions. The book begins with an overview of the technology and challenges to applying the technology in manufacturing. Parts Two thru Seven focus on essential techniques and process, including cutting, welding, annealing, hardening and peening, surface treatments, coating and materials deposition. The final part of the book considers the mathematical modeling and control of laser processes. Throughout, chapters review the scientific theory underpinning applications, offer full appraisals of the processes described and review potential future trends. - A comprehensive practitioner guide and reference work explaining state-of-the-art laser processing technologies in manufacturing and other disciplines - Explores challenges, potential, and future directions through the continuous development of new, application-specific lasers in materials processing - Provides revised, expanded and updated coverage

Heat Treating and Surface Engineering

Heat Treating and Surface Engineering PDF Author: ASM Heat Treating Society. Conference and Exposition
Publisher: ASM International
ISBN: 1615032614
Category : Technology & Engineering
Languages : en
Pages : 608

Get Book Here

Book Description


Metallurgy for the Non-Metallurgist, Second Edition

Metallurgy for the Non-Metallurgist, Second Edition PDF Author: Arthur C. Reardon
Publisher: ASM International
ISBN: 1615038450
Category : Metallurgy
Languages : en
Pages : 527

Get Book Here

Book Description
The completely revised Second Edition of Metallurgy for the Non-Metallurgist provides a solid understanding of the basic principles and current practices of metallurgy. This major new edition is for anyone who uses, makes, buys or tests metal products. For both beginners and others seeking a basic refresher, the new Second Edition of the popular Metallurgy for the Non-Metallurgist gives an all-new modern view on the basic principles and practices of metallurgy. This new edition is extensively updated with broader coverage of topics, new and improved illustrations, and more explanation of basic concepts. Why are cast irons so suitable for casting? Do some nonferrous alloys respond to heat treatment like steels? Why is corrosion so pernicious? These are questions that can be answered in this updated reference with many new illustrations, examples, and descriptions of basic metallurgy.

Real-time Closed-loop Control of Microstructure and Geometry in Laser Materials Processing

Real-time Closed-loop Control of Microstructure and Geometry in Laser Materials Processing PDF Author: Mohammad Hossein Farshidianfar
Publisher:
ISBN:
Category : Laser materials
Languages : en
Pages : 190

Get Book Here

Book Description
Laser Materials Processing (LMP) is currently one of the fastest growing technologies of the 21st century. Different categories of this technology such as Laser Additive Manufacturing (LAM) and Laser Heat Treatment (LHT) have now paved the way for more versatile methods of manufacturing that were not possible through conventional manufacturing methods. The localized laser heat source provides advantages such as minimal dilution, minimal distortion, small heat affected zones, and improved localized geometry and quality. However, these advantages come at a price, which is the number of inputs, outputs and process parameters involved that make the LMP a complex process for mainstream manufacturing. Current industrial LMP platforms require an extensive amount of manual tuning and process knowledge in order to achieve high quality production. Nonetheless, because of process sensitivity and lack of automation in LMP machines, the material and mechanical properties of LMP-manufactured products are highly inconsistent. Therefore, to take advantage of the technology's benefits and to establish LMP into the mainstream manufacturing technology, it is highly essential to develop a fully automated closed-loop LMP process that can intelligently control important output characteristics in real-time. In this research, an automated real-time closed-loop process will be studied and developed to simultaneously control two of the most important LMP output properties: (1) microstructure and (2) geometry. A multi-objective thermal-geometry monitoring and control module is developed to enable closed-loop control of microstructure and geometry properties of the LMP process. Geometry features such as clad height of the LAM process are directly monitored through a CCD camera. Geometry control is achieved by direct control of absolute geometrical values in real-time. An infrared thermal image acquisition system is integrated with the CCD-based imaging system to monitor real-time thermal dynamics. Thermal dynamics of the process such as the cooling rate, melt pool temperature, and heating rate are recorded directly in real-time through a specific set of thermal image analyses algorithms. Microstructure control is defined as control of consistency and stability of a desired set of microstructures for specific materials correlated with a set of perceived thermal dynamics and thermal signatures offline. Therefore, by directly controlling the desired set of correlated thermal dynamics in real-time, a consistent controlled microstructure is guaranteed during the process. A complete closed-loop control process is developed by integrating the monitoring system, LMP system and a multi-input-multi-output controller system. LHT and LAM experiments are conducted with thermal monitoring to understand and predict microstructue, hardness and geometry characteristics in real-time. Microstructure features such as martensitic formation and phase transformations are correlated with real-time thermal cooling/heating rates and melt pool temperatures to develop a microstructure prediction method. Important geometry properties such as hardened depth are also correlated with the thermal dynamics to identify a suitable feedback signal for closed-loop control of the depth, which cannot be monitored by a CCD camera. Thermal patterns are identified for online control of the hardness during single-track and multi-track LHT and LAM processes. Furthermore, an accurate and computationally efficient thermal dynamics model is developed and validated for the LHT and LAM processes for real-time estimation of the thermal dynamics of the process with limited information of the thermal boundaries. The dynamic model is integrated into a state observer feedback control system to provide model-based closed-loop control of the thermal dynamics. The intelligent closed-loop process is evaluated for different case studies of single-track and multi-track laser heat treatment and laser additive manufacturing. The real-time control of microstructure and hardness is achieved in the LHT process through a closed-loop control of the peak temperature. State observer feedback control of the peak temperature is also evaluated for the LHT process. Single-input-single-output control of the clad height and cooling rate are also incorporated for individual real-time control of the microstructure and geometry. Finally, an integrated microstructure and geometry control of the LAM process is constructed and tested for single-track and multi-track LAM depositions, to provide consistent material properties with controlled clad height. As a result of the closed-loop multi-input-multi-output control, the consistency and quality of the LMP manufacturing processes have increased significantly. The controller is capable of eliminating the effect of process and environmental disturbances such as irregular workpiece geometries or undesired heat accumulations. As a result, the developed closed-loop system significantly reduces the extensive amount of time and effort required for manual tuning of LMP setups, and automatically adjusts the process inputs to achieve the desired material and geometry properties. In addition, it also provides an essential tool for obtaining in-process knowledge of the LMP manufacturing process.

Laser-Assisted Fabrication of Materials

Laser-Assisted Fabrication of Materials PDF Author: Jyotsna Dutta Majumdar
Publisher: Springer Science & Business Media
ISBN: 3642283594
Category : Science
Languages : en
Pages : 513

Get Book Here

Book Description
Laser assisted fabrication involves shaping of materials using laser as a source of heat. It can be achieved by removal of materials (laser assisted cutting, drilling, etc.), deformation (bending, extrusion), joining (welding, soldering) and addition of materials (surface cladding or direct laser cladding). This book on ́Laser assisted Fabrication’ is aimed at developing in-depth engineering concepts on various laser assisted macro and micro-fabrication techniques with the focus on application and a review of the engineering background of different micro/macro-fabrication techniques, thermal history of the treated zone and microstructural development and evolution of properties of the treated zone.

Unit Manufacturing Processes

Unit Manufacturing Processes PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309176670
Category : Technology & Engineering
Languages : en
Pages : 228

Get Book Here

Book Description
Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.

Recommended Values of Thermophysical Properties for Selected Commercial Alloys

Recommended Values of Thermophysical Properties for Selected Commercial Alloys PDF Author: K. C. Mills
Publisher: Woodhead Publishing
ISBN: 9780871707536
Category : Alloys
Languages : en
Pages : 288

Get Book Here

Book Description


Thermal Energy

Thermal Energy PDF Author: Yatish T. Shah
Publisher: CRC Press
ISBN: 1315305941
Category : Technology & Engineering
Languages : en
Pages : 854

Get Book Here

Book Description
The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.

The Laser Manufacturing Process

The Laser Manufacturing Process PDF Author: Anooshiravan Farshidianfar
Publisher: CRC Press
ISBN: 1040103324
Category : Technology & Engineering
Languages : en
Pages : 229

Get Book Here

Book Description
The Laser Manufacturing Process is a comprehensive guide to industrial laser processes, offering insights into their fundamentals, applications across industries, production specifics, and characteristics, including mechanical, metallurgical, and geometrical aspects, as well as potential defects. The book also investigates how industrial laser processes are developed and the diverse attributes of the resulting objects, emphasizing their significance in industrial settings. Here, “objects” refer to the tangible outcomes of laser manufacturing, encompassing a wide array of products and components created through processes like cutting, welding, and additive manufacturing. These objects exhibit distinct mechanical properties, metallurgical characteristics, and geometrical precision, all of which are crucial considerations in their utility and performance within industrial environments. This book functions as a concise reference manual catering to the needs of both students and professionals who require knowledge related to laser manufacturing processes, such as laser cutting, laser welding, and laser additive manufacturing processes.